胶东三山岛金矿床黄铁矿As富集机制及其对金成矿作用的指示
Enrichment mechanisms of arsenic in pyrite from Sanshandao gold deposit (Jiaodong Peninsula, China) and implications for gold metallogenesis
查看参考文献58篇
文摘
|
胶东是中国最大的金矿集区,其金矿成因目前还存在较大争议。作为最重要的载金矿物,黄铁矿显微结构及元素-同位素组成能够很好地示踪成矿物质来源和成矿过程。利用SEM、EPMA和LA-ICP-MS微区原位分析方法对胶东代表性蚀变岩型金矿-三山岛金矿的黄铁矿开展详细的BSE显微结构以及As含量和S同位素耦合关系研究,发现矿区至少存在3种不同结构和As含量的黄铁矿:①含金石英-黄铁矿细脉中具交代残余结构的低As黄铁矿(Py-1),在BSE图像中显示暗色的核部(Py-1a)和亮色的边部(Py-1b),Py-1a和Py-1b的w(As)分别为48×10~(-6)~524×10~(-6)和183×10~(-6)~1134×10~(-6),δ~(34)S值分别为10.4‰~10.8‰和11.6‰~11.9‰;②含金石英-黄铁矿细脉中具韵律环带结构的高As黄铁矿(Py-2),在BSE图像中显示富含矿物包裹体并多孔的核部(Py-2a)以及很少含矿物包裹体的“干净”边部(Py-2b),Py-2a和Py-2b的w(As)分别为0.14%~0.31%和0.47%~0.97 %;③含金石英-多金属硫化物细脉中具核边结构且As含量变化大的黄铁矿(Py-3),其核部Py-3a富含黄铜矿、闪锌矿等矿物包裹体并贫As,w(As)仅为1×10~(-6)~10×10~(-6),δ~(34)S值为4.2%~5.8‰,边部Py-3b几乎不含矿物包裹体但富As,w(As)为8877× 10~(-6)~17 839×10~(-6),δ~(34)S值为7.7%~10.1‰。上述黄铁矿中,从Py-1a到Py-1b,w(As)和δ~(34)S值缓慢升高,可能主要受水岩相互作用的控制;Py-2具韵律环带且核部多孔、多矿物包裹体,指示了较为剧烈的流体沸腾作用;Py-3a和Py- 3b具有截然不同的w(As)和δ~(34)S值,指示了外来富As流体的加入。这些过程有利于As和Au的进一步富集,多种形式的富As和Au机制表明胶东金矿存在复杂的矿化过程和物质来源,特别是流体在迁移过程中萃取围岩中的成矿物质不可忽视。 |
其他语种文摘
|
Jiaodong Peninsula is the largest gold Province in China. How the huge amounts of gold were accumulated in such an area is still controversial. Pyrite is the most important Au-carrier mineral, the elemental and isotopic compositions of which, coupled with its microtexture, can well record the specific ore-forming processes and the origin of Au. In this study, SEM, EPMA and LA- (MC) - ICP-MS analyses were conducted on microtextures as well as As contents and S isotopic compositions of pyrite from the giant Sanshandong gold deposit. The results show that at least three types of pyrite occur: ① Low-As pyrite (Py-1) in the Au-bearing quartz-pyrite vein, which shows metasomatic relict texture. Under the BSE imaging, a dark relict core (Py-1a) is surrounded by a grey rim (Py-1b). The Py-1a has As contents of 48×10~(-6)~524×10~(-6) and δ~(34)S values of 10.4‰~10.8‰ while the Py-1b has As contents of 183×10~(-6)~1134×10~(-6) and δ~(34)S values of 11.6‰~11.9‰; ② High-As pyrite (Py-2) in the Au-bearing quartz-pyrite vein, which shows rhythmic zoning texture. Under the BSE imaging, the pyrite has a dark porous core containing abundant mineral inclusions (Py-2a) and a bright clean rim (Py-2b). The Py-2a and Py-2b have As contents of 0.14%~0.31% and 0.47%~0.97%, respectively; ③ Pyrite in the Au-bearing quartz-polymetallic sulfide vein (Py-3). This pyrite is characterized by core-rim texture, showing a dark As-poor core (Py-3a) and a grey As-rich rim (Py-3b). The Py-3a and Py-3b have As contents of 1×10~(-6)~10×10~(-6) and 8877×10~(-6)~17839×10~(-6), δ~(34)S values of 4.2‰~5.8‰ and 7.7‰~10.1‰, respectively. The slight increase of As and δ~(34)S from Py-1a and Py- 1b was most likely induced by fluid-rock interaction. The rhythmic zoning texture of Py-2, coupled with its mineral inclusion-bearing and porous core, likely suggests a fluid boiling. The contrasted As and δ~(34)S values between the Py-3a and Py-3b indicate the injection of another As-rich fluid. The above processes facilitate the As and Au to be further enriched, implying that complex ore-forming processes and multiple origins of ore-forming metals contributed to the giant gold mineralization. Especially, the fluids extracting ore-forming metals from wall rocks cannot be ignored. |
来源
|
矿床地质
,2021,40(3):419-431 【核心库】
|
DOI
|
10.16111/j.0258-7106.2021.03.002
|
关键词
|
地球化学
;
黄铁矿原位分析
;
显微结构
;
富As机制
;
s同位素
;
三山岛金矿
;
胶东
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学地球与行星科学学院, 北京, 100049
3.
山东省地质科学研究院, 国土资源部金矿成矿过程与资源利用重点实验室;;山东省金属矿产成矿地质过程与资源利用重点实验室, 山东, 济南, 250013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7106 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:7000750
|
参考文献 共
58
共3页
|
1.
Bao Z A. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS.
International Journal of Mass Spectrometry,2017,421:255-262
|
CSCD被引
29
次
|
|
|
|
2.
Barker S L L. Uncloaking invisible gold: Use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits.
Econ. Geol,2009,104(7):897-904
|
CSCD被引
25
次
|
|
|
|
3.
Benning L G. Hydrosulphide complexing of Au (Ⅰ) in hydrothermal solutions from 150~400°C and 500~1500 bar.
Geochimica et Cosmochimica Acta,1996,60(11):1849-1871
|
CSCD被引
71
次
|
|
|
|
4.
Cai Y C. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain.
Gondwana Research,2013,24(2):601-621
|
CSCD被引
46
次
|
|
|
|
5.
Cline J S. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models.
Economic Geology 100th Anniversary Volume,2005:451-484
|
CSCD被引
42
次
|
|
|
|
6.
Cook N J. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China).
Chemical Geology,2009,264(1/4):101-121
|
CSCD被引
70
次
|
|
|
|
7.
Cook N J. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements.
Econ. Geol,2013,108(6):1273-1283
|
CSCD被引
32
次
|
|
|
|
8.
Danyushevsky L. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects.
Geochemistry: Exploration Environment Analysis,2011,11(1):51-60
|
CSCD被引
41
次
|
|
|
|
9.
Deditius A P. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits.
Geochimica et Cosmochimica Acta,2014,140:644-670
|
CSCD被引
61
次
|
|
|
|
10.
Deditius A P. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance.
Geochimica et Cosmochimica Acta,2008,72(12):2919-2933
|
CSCD被引
37
次
|
|
|
|
11.
Deng J. An integrated mineral system model for the gold deposits of the giant Jiaodong Province, eastern China.
Earth-Science Reviews,2020,208:103274
|
CSCD被引
82
次
|
|
|
|
12.
Emsbo P. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin trend, Nevada.
Econ. Geol,2003,98(6):1069-1105
|
CSCD被引
40
次
|
|
|
|
13.
Emsbo P. The giant Carlin gold Province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary.
Mineralium Deposita,2006,41:517-525
|
CSCD被引
9
次
|
|
|
|
14.
Fan H R. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold Province, China.
Mineralium Deposita,2003,38:739-750
|
CSCD被引
166
次
|
|
|
|
15.
Fan H R. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the Jiaodong Peninsula, eastern China.
Geological Society, London, Special Publications, 280,2007:303-316
|
CSCD被引
2
次
|
|
|
|
16.
Feng K. Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously goldrich Daliuhang orogenic deposit, Jiaodong, China.
Mineralium Deposita,2020,55:293-308
|
CSCD被引
17
次
|
|
|
|
17.
Feng K. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilan'gou gold deposit, Jiaodong, China: Evidence from trace element mapping and in-situ sulfur isotope composition.
Journal of Asian Earth Sciences,2018,160:304-321
|
CSCD被引
20
次
|
|
|
|
18.
Goldfarb R J. The dilemma of the Jiaodong gold deposits: Are they unique?.
Geoscience Frontiers,2014,5(2):139-153
|
CSCD被引
136
次
|
|
|
|
19.
Hou M L. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, East China: Implications for crustal thickening to delamination.
Geological Magazine,2007,144(4):619-631
|
CSCD被引
74
次
|
|
|
|
20.
Hu H L. Twostage gold deposition in response to H_2S loss from a single fluid in the Sizhuang deposit (Jiaodong, China).
Ore Geology Reviews,2020,120:103450
|
CSCD被引
9
次
|
|
|
|
|