基于SPAD阵列的共光路扫描三维成像
Coaxial Scanning Three-dimensional Imaging Based on SPAD Array
查看参考文献31篇
文摘
|
基于单光子雪崩二极管(SPAD)阵列探测器的三维成像技术在工业和科学领域具有重要的应用前景。然而现有的SPAD阵列器件仍存在小阵列规模和低像素填充率所导致的低空间分辨率问题,为此基于SPAD阵列(32 pixel×32 pixel)和衍射光学元件(DOE)搭建收发共光路扫描三维成像实验系统。利用DOE将出射激光整形为激光点阵并与接收视场匹配可以提升激光能量利用效率,通过共光路扫描可以实现高分辨三维成像。利用基于滑动时间窗的噪声光子滤除算法和基于全变分正则化的图像重构算法对回波光子数据进行处理。实验结果表明,图像重构算法可以获取10 m外目标64 pixel×64 pixel的三维图像,且在平均每像素0.86个信号光子的条件下实现清晰成像,成像结果的平均绝对误差为0.016 m。 |
其他语种文摘
|
Three-dimensional (3D) imaging technology based on single-photon avalanche diode (SPAD) array detectors has important industrial and scientific applications. However, existing SPAD array devices are limited by low spatial resolution due to small array size and low pixel-filling factor. Therefore, a coaxial scanning 3D imaging experiment system is built using a SPAD array (32 pixelX 32 pixel) and a diffractive optical element (DOE). Using the DOE to shape an outgoing laser into a laser lattice and match it with the receiving field of view can improve laser energy utilization efficiency and achieve high-resolution 3D imaging through coaxial scanning. A noise photonfiltering algorithm based on a sliding time window and an image reconstruction algorithm based on total variational regularization are used to process the echo photon data. Experimental results show that, a 64 pixel×64 pixel 3D image of a target at a distance of 10 m can be obtained with an average of 0.86 signal photons per pixel to achieve clear imaging, the average absolute error of imaging results is 0.016 m. |
来源
|
激光与光电子学进展
,2021,58(10):1011024 【核心库】
|
DOI
|
10.3788/LOP202158.1011024
|
关键词
|
成像系统
;
三维成像
;
光子计数
;
飞行时间
;
共光路扫描
;
正则化方法
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-4125 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6998096
|
参考文献 共
31
共2页
|
1.
刘岩鑫. 超低暗计数率硅单光子探测器的实现.
光学学报,2020,40(10):1004001
|
CSCD被引
8
次
|
|
|
|
2.
刘凯宝. InP基近红外单光子雪崩光电探测器阵列.
激光与光电子学进展,2019,56(22):220001
|
CSCD被引
13
次
|
|
|
|
3.
Aull B F. Large-format image sensors based on custom Geiger-mode avalanche photodiode arrays.
Proceedings of SPIE. 10729,2018:107290B
|
CSCD被引
1
次
|
|
|
|
4.
Shin D. Photon-efficient imaging with a single-photon camera.
Nature Communications,2016,7:12046
|
CSCD被引
20
次
|
|
|
|
5.
Tachella J. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers.
Nature Communications,2019,10(1):4984
|
CSCD被引
10
次
|
|
|
|
6.
Chan S S. Long-range depth imaging using a single-photon detector array and nonlocal data fusion.
Scientific Reports,2019,9:8075
|
CSCD被引
2
次
|
|
|
|
7.
米小什. 基于微通道板的单光子激光测高技术研究.
光学学报,2018,38(12):1228001
|
CSCD被引
3
次
|
|
|
|
8.
Henriksson M. Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array.
Optical Engineering,2018,57(9):093104
|
CSCD被引
3
次
|
|
|
|
9.
孙剑峰. 32×32面阵InGaAs Gm-APD激光主动成像实验.
红外与激光工程,2016,45(12):1206006
|
CSCD被引
10
次
|
|
|
|
10.
谢绍禹. 基于盖革APD阵列的微扫描激光成像技术.
红外与激光工程,2018,47(12):1206010
|
CSCD被引
3
次
|
|
|
|
11.
葛鹏. 基于盖革APD阵列的光子计数三维成像.
红外与激光工程,2020,49(3):0305007
|
CSCD被引
4
次
|
|
|
|
12.
Albota M A. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser.
Applied Optics,2002,41(36):7671-7678
|
CSCD被引
31
次
|
|
|
|
13.
Marino R M. Jigsaw: a foliage-penetrating 3D imaging laser radar system.
Lincoln Laboratory Journal,2005,15(1):23-36
|
CSCD被引
17
次
|
|
|
|
14.
Knowlton R.
Airborne ladar imaging research testbed,2021
|
CSCD被引
1
次
|
|
|
|
15.
Clifton W E. Medium altitude airborne Geiger-mode mapping LIDAR system.
Proceedings of SPIE. 9465,2015:946506
|
CSCD被引
4
次
|
|
|
|
16.
Stoker J. Evaluation of single photon and Geiger mode lidar for the 3D elevation program.
Remote Sensing,2016,8(9):767
|
CSCD被引
6
次
|
|
|
|
17.
Lim H C. Evaluation of a Geiger-mode imaging flash lidar in the approach phase for autonomous safe landing on the Moon.
Advances in Space Research,2019,63(3):1122-1132
|
CSCD被引
4
次
|
|
|
|
18.
Xu L. Dual Gm-APD polarization lidar to acquire the depth image of shallow semitransparent media with a wide laser pulse.
IEEE Photonics Journal,2020,12(5):6803310
|
CSCD被引
1
次
|
|
|
|
19.
Li Z P. Single-photon computational 3D imaging at 45 km.
Photonics Research,2020,8(9):1532-1540
|
CSCD被引
24
次
|
|
|
|
20.
Yan Q R. Single-photon reflectivity and depth imaging by continuous measurement of arrival time of photons.
IEEE Photonics Journal,2019,11(6):6901914
|
CSCD被引
1
次
|
|
|
|
|