激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能
Microstructures and mechanical properties of zirconium-containing 7×××aluminum alloy prepared by selective laser melting
查看参考文献33篇
文摘
|
热裂问题是激光选区熔化成形(SLM)7×××系铝合金面临的主要障碍之一。通过低能球磨工艺制备ZrH_2/7075复合粉末,采用激光选区熔化技术制备含锆7×××系铝合金材料,分析了不同ZrH_2添加量(0.5%,1.0%,1.5%,质量分数,下同)对试样显微组织和力学性能的影响规律。结果表明:随着ZrH_2含量的增加,SLM试样的柱状晶组织逐渐消失,热裂纹逐渐减少,当ZrH_2含量为1.5%时,试样显微组织完全转变为细小等轴晶(平均晶粒尺寸为1.6μm),热裂纹完全消除。ZrH_2在SLM成形过程中与铝熔体原位反应形成L1_2型Al_3Zr相,L1_2型Al_3Zr相的异质形核作用促进了柱状晶到等轴晶的转变,抑制了热裂纹的产生。经T6热处理后,试样抗拉强度为(550±10)MPa,屈服强度为(490±5) MPa,伸长率为(12±1)%,断口处存在大量韧窝,表现为韧性断裂。 |
其他语种文摘
|
The preparation of 7× × × series aluminum alloy by selective laser melting technology (SLM)is hindered by hot tearing.Novel ZrH_2 modified 7075 composite powders were prepared by the low-energy ball milling technology.Zirconium-containing 7××× series aluminum alloy was then prepared by the SLM process.The microstructure and mechanical properties of the samples with different ZrH_2 contents(0.5%,1.0%,1.5%,mass fraction,the same below)were systematically investigated.The results show that the addition of ZrH_2 can significantly reduce hot tearing and change the microstructure.When 1.5% ZrH_2 is added,the hot tearing is completely eliminated and the grain microstructure is entirely composed of fine equiaxed grains.The transition of columnar grains to equiaxed grains is attributed to the in-situformation of L1_2-Al_3Zr which provides numerous nucleation positions for solidification.After T6 heat treatment,the tensile strength,yield strength and elongation of SLMed sample are (550±10),(490±5)MPa and (12±1)%,respectively.Fractography analysis shows a large number of dimples on the fracture surface after tensile testing,indicating ductile fracture mode. |
来源
|
材料工程
,2021,49(6):85-93 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.001165
|
关键词
|
7×××系铝合金
;
ZrH_2
;
激光选区熔化
;
热裂纹
;
力学性能
|
地址
|
华南理工大学, 国家金属材料近净成形工程技术研究中心, 广州, 510641
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
广东省重点领域研发计划项目
;
广东省科技计划项目
|
文献收藏号
|
CSCD:6997248
|
参考文献 共
33
共2页
|
1.
王建国. 航空航天变形铝合金的进展(3).
轻合金加工技术,2013(10):1-14
|
CSCD被引
35
次
|
|
|
|
2.
李承波. 双级时效对汽车用高强铝合金组织性能的影响.
材料工程,2019,47(10):57-63
|
CSCD被引
1
次
|
|
|
|
3.
张新明. 高强铝合金的发展及其材料的制备加工技术.
金属学报,2015,51(3):257-271
|
CSCD被引
91
次
|
|
|
|
4.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
114
次
|
|
|
|
5.
Aboulkhair N T. Reducing porosity in AlSi_(10)Mg parts processed by selective laser melting.
Additive Manufacturing,2014,1/4:77-86
|
CSCD被引
76
次
|
|
|
|
6.
Brandl E. Additive manufactured AlSi_(10)Mg samples using selective laser melting(SLM):microstructure,high cycle fatigue,and fracture behavior.
Materials & Design,2012,34:159-169
|
CSCD被引
58
次
|
|
|
|
7.
Bartkowiak K. New developments of laser processing aluminium alloys via additive manufacturing technique.
Physcs Proc,2011,12:393-401
|
CSCD被引
29
次
|
|
|
|
8.
Kaufmann N. Influence of process parameters on the quality of aluminium alloy EN AW 7075using selective laser melting(SLM).
Physics Procedia,2016,83:918-926
|
CSCD被引
29
次
|
|
|
|
9.
Reschetnik W. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075aluminium alloy.
Procedia Structural Integrity,2016,2:3040-3048
|
CSCD被引
14
次
|
|
|
|
10.
Wang P. Selective laser melting of Al-Zn-Mg-Cu:heat treatment,microstructure and mechanical properties.
Journal of Alloys and Compounds,2017,707:287-290
|
CSCD被引
12
次
|
|
|
|
11.
朱海红. 高强铝合金的激光选区熔化成形研究现状.
激光与光电子学进展,2018,55(1):22-28
|
CSCD被引
6
次
|
|
|
|
12.
Song B. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti_6Al_4V.
Materials &Design,2012,35:120-125
|
CSCD被引
27
次
|
|
|
|
13.
Ming T. Oxides,porosity and fatigue performance of AlSi_(10)Mg parts produced by selective laser melting.
International Journal of Fatigue,2016,94:192-201
|
CSCD被引
2
次
|
|
|
|
14.
Qi T. Selective laser melting of Al7050powder:melting mode transition and comparison of the characteristics between the keyhole and conduction mode.
Materials & Design,2017,135:257-266
|
CSCD被引
27
次
|
|
|
|
15.
Martin J H. 3D printing of high-strength aluminium alloys.
Nature,2017,549(7672):365-369
|
CSCD被引
215
次
|
|
|
|
16.
Zhou S Y. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy:cracking elimination by co-incorporation of Si and TiB_2.
Additive Manufacturing,2020,36:101458
|
CSCD被引
19
次
|
|
|
|
17.
Zhou L. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion.
Scripta Materialia,2019,158:24-28
|
CSCD被引
18
次
|
|
|
|
18.
Li L. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu alloy by Si and Zr microalloying.
Materials Science and Engineering:A,2020,787:139492
|
CSCD被引
8
次
|
|
|
|
19.
Knipling K E. Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr Alloys.
Metallurgical and Materials Transactions:A,2007,38(10):2552-2563
|
CSCD被引
19
次
|
|
|
|
20.
Wang F. The grain refinement mechanism of cast aluminium by zirconium.
Acta Materialia,2013,61(15):5636-5645
|
CSCD被引
15
次
|
|
|
|
|