锂离子电池发展现状及其在航空领域的应用分析
Recent advances in lithium-ion batteries and their applications towards aerospace
查看参考文献85篇
文摘
|
相对于镍镉、铅酸等传统电池,锂离子电池具有能量密度高、工作电压高、自放电率低、循环寿命长、充放电效率高、工作温度范围宽、环境污染小等优点。目前,锂离子电池已广泛应用手机、笔记本等3C设备和新能源汽车领域,在民用飞机、无人机、空间探测器等航空航天领域中也拥有广阔的应用前景。为了进一步拓宽锂离子电池的应用领域,众多研究团队开发出了种类繁多的,性能优异的锂离子电池电极材料;通过深入研究,开发出了具有宽温适应性和超高压适应性的电解液。经过30年的技术攻关与产业化推广,锂离子电池相关产品日渐成熟。为进一步拓宽锂离子电池的应用场景,高性能电极材料的制备和安全电解液体系的构建将是锂离子电池技术发展的重要方向。 |
其他语种文摘
|
Due to the high energy density, long cycling life, excellent Coulombic efficiency, wide working temperature range and low operation cost, Lithium-ion battery (LIB) is widely regarded as one of the most promising candidates for energy storage systems. At present time, LIB has been used in mobile phones, notebook computers, electric vehicles and other consumer fields, but also in civil aircraft, unmanned aerial vehicles, space detectors and the aerospace fields have a broad application prospect. In order to further expand the application field of LIB, a large number of research teams have designed and developed a wide variety of electrode materials with excellent performance for LIB through ingenious ideas. Through in-depth research, the electrolyte with wide temperature adaptability and high pressure adaptability is developed. To further explore and develop LIB with improved property, much research effort has been devoted into this field. After 30 years of technological breakthrough and industrial promotion, LIBrelated products have become increasingly mature, and have been widely used in various fields in order to further broaden the application scenarios of LIB, the preparation of high-performance electrode materials and the construction of safe electrolyte system will be the new direction of the development of LIB technology. |
来源
|
航空材料学报
,2021,41(3):83-95 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000046
|
关键词
|
近期进展
;
锂离子电池
;
航空航天
;
电极材料
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
中国航发北京航空材料研究院石墨烯储能材料研究中心, 北京, 100095
3.
北京石墨烯技术研究院电池材料事业部, 北京, 100094
4.
北京航空航天大学前沿科学创新研究院, 北京, 100191
5.
中国地质大学(武汉), 地质探测与评估教育部重点实验室, 武汉, 430074
6.
中国地质大学(武汉)材料与化学学院, 武汉, 430074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
电工技术 |
基金
|
中国航发航材院石墨烯专项基金
|
文献收藏号
|
CSCD:6988494
|
参考文献 共
85
共5页
|
1.
Donateo T. Fuel economy of hybrid electric flight.
Applied Energy,2017,206:723-738
|
CSCD被引
4
次
|
|
|
|
2.
Li H. Experimental and theoretical investigation of power generation scheme driven by thermal cracked gaseous hydrocarbon fuel for hypersonic vehicle.
Energy Conversion and Management,2018,165:334-343
|
CSCD被引
3
次
|
|
|
|
3.
Sliwinski J. Hybrid-electric propulsion integration in unmanned aircraft.
Energy,2017,140:1407-1416
|
CSCD被引
4
次
|
|
|
|
4.
Knapp V V B M. Potential for electric aircraft.
Nature Sustainability,2019,2:88-89
|
CSCD被引
3
次
|
|
|
|
5.
Lee D S. Aviation and global climate change in the 21st century.
Atmos Environ,2009,43(22):3520-3537
|
CSCD被引
20
次
|
|
|
|
6.
Schafer A W. Technological,economic and environmental prospects of all-electric aircraft.
Nature Energy,2018,4(2):160-166
|
CSCD被引
2
次
|
|
|
|
7.
Notter D A. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
Environmental Science and Technology,2010,44:6550-6556
|
CSCD被引
17
次
|
|
|
|
8.
Kennedy B. Camilleri-use of lithium-ion batteries in electric vehicles.
Journal of Power Sources,2000,90(2):156-162
|
CSCD被引
24
次
|
|
|
|
9.
Jaguemont J. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures.
Applied Energy,2016,164:99-114
|
CSCD被引
45
次
|
|
|
|
10.
Nishizawa A. Fuel cell and Li-ion battery direct hybridization system for aircraft applications.
Journal of Power Sources,2013,222:294-300
|
CSCD被引
2
次
|
|
|
|
11.
赵保国. 无人机电源现状及发展趋势.
飞航导弹,2017,1(7):35-41
|
CSCD被引
1
次
|
|
|
|
12.
邢广华. 民用航空锂离子电池的发展与应用研究.
科技创新与应用,2016(2):102-104
|
CSCD被引
4
次
|
|
|
|
13.
闫金定. 锂离子电池发展现状及其前景分析.
航空学报,2014,35(10):2767-2775
|
CSCD被引
39
次
|
|
|
|
14.
杨敏. 锂电池在航空领域的应用再现曙光.
航空维修与工程,2017(9):30-32
|
CSCD被引
5
次
|
|
|
|
15.
Marsha R A. Li ion batteries for aerospace applications.
Journal of power sources,2001,97:25-27
|
CSCD被引
8
次
|
|
|
|
16.
Hollinger A S. Cylindrical lithium-ion structural batteries for drones.
International Journal of Energy Research,2019,44(1):560-566
|
CSCD被引
5
次
|
|
|
|
17.
马昊. 锂离子电池Sn基负极材料研究进展.
材料工程,2017,45(6):138-146
|
CSCD被引
10
次
|
|
|
|
18.
齐新. MXenes二维纳米材料及其在锂离子电池中的应用研究进展.
材料工程,2019,47(12):10-20
|
CSCD被引
12
次
|
|
|
|
19.
袁颂东. 锂离子电池高镍三元材料的研究进展.
材料工程,2019,47(10):1-9
|
CSCD被引
7
次
|
|
|
|
20.
常增花. 锂离子电池硅基负极界面反应的研究进展.
材料工程,2019,47(2):15-29
|
CSCD被引
1
次
|
|
|
|
|