SiC/SiC复合材料失效行为研究进展
Research progress on the failure behavior of SiC/SiC composites
查看参考文献75篇
文摘
|
连续碳化硅(SiC)纤维增韧的SiC/SiC复合材料由连续SiC纤维、界面层和SiC基体组成,具有高强度、高韧性、低密度、耐高温、抗氧化等一系列优异性能,是理想的航空发动机和燃气轮机热端构件材料。在力、热、水、氧、燃气冲刷、异物冲击等多种因素的影响下,SiC/SiC复合材料具有复杂的断裂和腐蚀失效行为。随着SiC/SiC复合材料的广泛应用,针对其疲劳和蠕变失效机制的研究变得越来越重要。近年来,声发射、数字图像相关、电阻监测、原位CT和SEM等新的检测手段在SiC/SiC复合材料上的应用,有助于进一步阐明其在力学实验中裂纹萌生和发展过程以及发生最终破坏的机理。 |
其他语种文摘
|
Continuous silicon carbide (SiC) fiber toughened SiC/SiC composites are composed of continuous SiC tows, interphase and SiC matrix. They possess a series of excellent properties such as high strength, high stiffness, low density, high-temperature resistance and oxidation resistance. They are the ideal materials for hot-section components of aero engines and land-based gas turbines. Under the influence of load, heat, vapor and oxidants, as well as the impact of gas and foreign matter, SiC/SiC composites have complex rupture and erosion failure modes. As SiC/SiC composites are being applied more extensively, the research on the failure mechanism because of fatigue and creep is becoming more and more important. The application of new characterization methods, such as acoustic emission, digital image correlation, electric resistance monitoring, in-situ CT and SEM on the SiC/SiC composites in recent years could facilitate the illumination of the damage evolution and failure mechanism during mechanism tests. |
来源
|
航空材料学报
,2021,41(3):25-35 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000052
|
关键词
|
碳化硅
;
复合材料
;
损伤演化
;
失效
|
地址
|
1.
中国航发北京航空材料研究院, 先进复合材料国防科技重点实验室, 北京, 100095
2.
中国航发湖南动力机械研究所, 湖南, 株洲, 412002
3.
中国航发北京航空材料研究院, 航空材料检测与评价北京市重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:6988490
|
参考文献 共
75
共4页
|
1.
Naslain R R. SiC-matrix composites: nonbrittle ceramics for thermo-structural application.
International Journal of Applied Ceramic Technology,2005,2(2):75-84
|
CSCD被引
48
次
|
|
|
|
2.
刘虎. 国外航空发动机用SiC_f/SiC复合材料的材料级性能测试研究进展.
材料工程,2018,46(11):1-12
|
CSCD被引
25
次
|
|
|
|
3.
Corman G S. Rig and engine testing of melt infiltrated ceramic composites for combustor and shroud applications.
Journal of Engineering for Gas Turbines and Power,2002,124(3):459-464
|
CSCD被引
1
次
|
|
|
|
4.
Katoh Y. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects.
Journal of Nuclear Materials,2014,448(1/2/3):448-476
|
CSCD被引
44
次
|
|
|
|
5.
Bansal N P.
Ceramic matrix composites: materials, modeling and technology,2015
|
CSCD被引
3
次
|
|
|
|
6.
Corman G S.
Development history of GE 's prepreg melt infiltrated ceramic matrix composite material and applications, in comprehensive composite materials II,2018:325-338
|
CSCD被引
1
次
|
|
|
|
7.
吕晓旭. SiC_f/SiC复合材料氮化硼(BN)界面层及其复合界面层研究进展.
航空材料学报,2019,39(5):13-23
|
CSCD被引
9
次
|
|
|
|
8.
Halbig M. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications.
The 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2013
|
CSCD被引
1
次
|
|
|
|
9.
Bertrand D J. Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment.
Journal of Materials Science,2015,50(22):7437-7447
|
CSCD被引
5
次
|
|
|
|
10.
Morscher G N. Fiber effects on minicomposite mechanical properties for several silicon carbide fiber-chemically vapor-infiltrated silicon carbide matrix systems.
Journal of the American Ceramic Society,1999,82(1):145-155
|
CSCD被引
3
次
|
|
|
|
11.
Morscher G N. Effects of fiber architecture on matrix cracking for meltinfiltrated SiC/SiC composites.
International Journal of Applied Ceramic Technology,2010,7(3):276-290
|
CSCD被引
4
次
|
|
|
|
12.
Tracy J. Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation.
Journal of Materials Science,2015(50):5286-5299
|
CSCD被引
2
次
|
|
|
|
13.
Hilmas A M. Damage evolution in SiC/SiC unidirectional composites by X-ray tomography.
Journal of the American Ceramic Society,2020,103(5):3436-3447
|
CSCD被引
2
次
|
|
|
|
14.
Morscher G N. Acoustic emission and electrical resistance in SiC-based laminate ceramic composites tested under tensile loading.
Journal of the European Ceramic Society,2017,37(13):3861-3872
|
CSCD被引
5
次
|
|
|
|
15.
Maillet E. Combining in-situ synchrotron X-ray microtomography and acoustic emission to characterize damage evolution in ceramic matrix composites.
Journal of the European Ceramic Society,2019(39):3546-3556
|
CSCD被引
4
次
|
|
|
|
16.
Bernachy-Barbe F. Characterization of SiC/SiC composites damage mechanisms using digital image correlation at the tow scale.
Composites Part A,2015(68):101-109
|
CSCD被引
4
次
|
|
|
|
17.
Nozawa T. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring.
Journal of Nuclear Materials,2014,455(1/2/3):549-553
|
CSCD被引
5
次
|
|
|
|
18.
Rebillat F. The concept of a strong interface applied to SiC/SiC composites with a BN interphase.
Acta Materialia,2000,48(18/19):4609-4618
|
CSCD被引
20
次
|
|
|
|
19.
赵爽. 不同界面SiC/SiC复合材料的断裂行为研究.
无机材料学报,2016,31(1):58-62
|
CSCD被引
12
次
|
|
|
|
20.
Zhao S. Mechanical properties and in situ crack growth observation of SiC/SiC composites.
Ceramics International,2014,40(5):7481-7485
|
CSCD被引
3
次
|
|
|
|
|