On Absolute Uniform Retracts, Uniform Approximation Property and Super Weakly Compact Sets of Banach Spaces
查看参考文献21篇
文摘
|
In this paper, we show that every super weakly compact convex subset of a Banach space is an absolute uniform retract, and that it also admits the uniform compact approximation property. These can be regarded as extensions of Lindenstrauss and Kalton’s corresponding results. |
来源
|
Acta Mathematica Sinica. English Series
,2021,37(5):731-739 【核心库】
|
DOI
|
10.1007/s10114-021-0273-1
|
关键词
|
Super weak compactness
;
absolute uniform retract
;
Banach spaces
|
地址
|
School of Mathematical Sciences, Xiamen University, Xiamen, 361005
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
Support by National Natural Science Foundation of China
|
文献收藏号
|
CSCD:6980064
|
参考文献 共
21
共2页
|
1.
Beauzamy B. Operateurs uniformement convexifiants.
Studia Math,1976,57(2):103-139
|
CSCD被引
7
次
|
|
|
|
2.
Benyamini Y.
Geometric Nonlinear Functional Analysis, Vol. 1. AmericanMathematical Society Colloquium Publications, Vol. 48,2000
|
CSCD被引
1
次
|
|
|
|
3.
Cepedello-Boiso M. Approximation of Lipschitz functions by Δ-convex functions in Banach spaces.
Israel J. Math,1998,106:269-284
|
CSCD被引
4
次
|
|
|
|
4.
Cheng L. On super weak compactness of subsets and its equivalences in Banach spaces.
J. Convex Anal,2018,25(3):899-926
|
CSCD被引
5
次
|
|
|
|
5.
Cheng L. On super-weakly compact sets and uniform convexifiable sets.
Studia. Math,2010,199(2):145-169
|
CSCD被引
12
次
|
|
|
|
6.
Cheng L. On super fixed point property and super weak compactness of convex subsets in Banach spaces.
J. Math. Anal. Appl,2015,428(2):1209-1224
|
CSCD被引
10
次
|
|
|
|
7.
Cheng L. On super weakly compact convex sets and representation of the dual of the normed semigroup they generate.
Canad. Math. Bull,2013,56(2):272-282
|
CSCD被引
7
次
|
|
|
|
8.
Cheng L. Convex functions, subdifferentiability and renormings.
Acta Math. Sin., Engl. Ser,1998,14(1):47-56
|
CSCD被引
2
次
|
|
|
|
9.
Cheng Q. On uniform convexity of Banach spaces.
Acta Math. Sin., Engl. Ser,2011,27(3):587-594
|
CSCD被引
1
次
|
|
|
|
10.
Clarkson J A. Uniform convex spaces.
Trans. Amer. Math. Soc,1936,40(3):396-414
|
CSCD被引
29
次
|
|
|
|
11.
Enflo P. Banach spaces which can be given an equivalent uniform convex norm.
Israel J. Math,1972,13:281-288
|
CSCD被引
10
次
|
|
|
|
12.
Fabian M. Sigma-finite dual dentability indices.
J. Math. Anal. Appl,2009,350(2):498-507
|
CSCD被引
6
次
|
|
|
|
13.
Isbell J R. On finite-dimensional uniform spaces.
Pacific J. Math,1959,9:107-121
|
CSCD被引
2
次
|
|
|
|
14.
Isbell J R. Uniform neighborhood retracts.
Pacific J. Math,1961,11:609-648
|
CSCD被引
2
次
|
|
|
|
15.
James R C. Super-reflexive Banach spaces.
Canad J. Math,1972,24:896-904
|
CSCD被引
8
次
|
|
|
|
16.
Kalton N J. Spaces of Lipschitz and Holder functions and their applications.
Collect. Math,2004,55(2):171-217
|
CSCD被引
4
次
|
|
|
|
17.
Kalton N J. The uniform structure of Banach spaces.
Math. Ann,2012,354(4):1247-1288
|
CSCD被引
2
次
|
|
|
|
18.
Lindenstrauss J. On nonlinear projections in Banach spaces.
Michigan Math. J,1964,11:263-287
|
CSCD被引
3
次
|
|
|
|
19.
Mazur S. Une remarque sur l'homeomorphie des champs fonctionnels.
Studia. Math,1929,1(1):83-85
|
CSCD被引
3
次
|
|
|
|
20.
Raja M. Finitely dentable functions, operators and sets.
J. Convex Anal,2008,15(2):219-233
|
CSCD被引
6
次
|
|
|
|
|