Unique Ergodicity for Zero-entropy Dynamical Systems with the Approximate Product Property
查看参考文献30篇
文摘
|
We show that for every topological dynamical system with the approximate product property, zero topological entropy is equivalent to unique ergodicity. Equivalence of minimality is also proved under a slightly stronger condition. Moreover, we show that unique ergodicity implies the approximate product property if the system has periodic points. |
来源
|
Acta Mathematica Sinica. English Series
,2021,37(2):362-376 【核心库】
|
DOI
|
10.1007/s10114-020-9377-2
|
关键词
|
Approximate product property
;
unique ergodicity
;
topological entropy
;
ergodic measure
;
minimality
;
specification
;
gluing orbit
;
interval map
;
periodic points
|
地址
|
China Economics and Management Academy, Central University of Finance and Economics, Beijing, 100081
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
国家自然科学基金
;
CUFE Young Elite Teacher Project
|
文献收藏号
|
CSCD:6980040
|
参考文献 共
30
共2页
|
1.
Alseda L L. Transitivity and dense periodicity for graph maps.
Journal of Difference Equations and Applications,2003,9(6):577-598
|
CSCD被引
1
次
|
|
|
|
2.
Beguin F. Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy-Rees technique.
Ann. Sci. Ecole Norm. Sup,2007,40(4):251-308
|
CSCD被引
1
次
|
|
|
|
3.
Blokh A M. Decomposition of dynamical systems on an interval.
Russ. Math. Surv,1983,38:133-134
|
CSCD被引
4
次
|
|
|
|
4.
Bomfim T. Topological features of flows with the reparametrized gluing orbit property.
Journal of Differential Equations,2017,262(8):4292-4313
|
CSCD被引
2
次
|
|
|
|
5.
Bowen R. Periodic points and measures for Axiom A diffeomorphisms.
Trans. Amer. Math. Soc,1971,154:377-397
|
CSCD被引
9
次
|
|
|
|
6.
Buzzi J. Specification on the interval.
Trans. Amer. Math. Soc,1997,349(7):2737-2754
|
CSCD被引
4
次
|
|
|
|
7.
Denker M. Ergodic theory on compact spaces.
Lecture Notes in Mathematics, Vol. 527,1976
|
CSCD被引
1
次
|
|
|
|
8.
Guan L. Measures of intermediate entropies and homogeneous dynamics.
Nonlinearity,2017,30:3349-3361
|
CSCD被引
1
次
|
|
|
|
9.
Hahn F. On the entropy of uniquely ergodic transformations.
Trans. Amer. Math. Soc,1967,126:335-360
|
CSCD被引
2
次
|
|
|
|
10.
Herman M. Construction d'un diffeomorphisme minimal d'entropie topologique non nulle.
Ergodic Theory and Dynamical Systems,1981,1:65-76
|
CSCD被引
1
次
|
|
|
|
11.
Katok A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms.
Publ. Math. I.H.E.S,1980,51:137-173
|
CSCD被引
22
次
|
|
|
|
12.
Konieczny J. Arcwise connectedness of the set of ergodic measures of hereditary shifts.
Proceedings of the American Mathematical Society,2018,146(8):3425-3438
|
CSCD被引
1
次
|
|
|
|
13.
Kwietniak D. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts.
Discrete and Continuous Dynamical Systems-A,2013,33(6):2451-2467
|
CSCD被引
1
次
|
|
|
|
14.
Kwietniak D. A panorama of specification-like properties and their consequences.
Contemporary Mathematics,2016,669:155-186
|
CSCD被引
3
次
|
|
|
|
15.
Lindenstrauss J. The Poulsen simplex.
Ann. Inst. Fourier (Grenoble),1978,28(1):91-114
|
CSCD被引
1
次
|
|
|
|
16.
Misiurewicz M. Smooth chaotic maps with zero topological entropy.
Ergodic Theory and Dynamical Systems,1988,8(3):421-424
|
CSCD被引
2
次
|
|
|
|
17.
Pfister C E. Large deviations estimates for dynamical systems without the specification property. Application to the β-shifts.
Nonlinearity,2005,18:237-261
|
CSCD被引
3
次
|
|
|
|
18.
Phelps R R.
Lectures on Choquet's theorem. Second Ed., Lecture Notes in Mathematics, Vol. 1757,2001
|
CSCD被引
1
次
|
|
|
|
19.
Quas A. Ergodic universality of some topological dynamical systems.
Trans. Amer. Math. Soc,2016,368(6):4137-4170
|
CSCD被引
1
次
|
|
|
|
20.
Sun P. Zero-entropy invariant measures for skew product diffeomorphisms.
Ergodic Theory and Dynamical Systems,2010,30:923-930
|
CSCD被引
1
次
|
|
|
|
|