汞矿区稻田土壤汞形态分布特征及对甲基化的影响
Distribution Characteristics of Mercury Occurrences in the Paddy Soil of Hg Mining Area and its Effect on Mercury Methylation
查看参考文献43篇
文摘
|
汞污染区稻米甲基汞超标现象普遍存在,汞在土壤中的形态分布被认为是影响甲基化过程的重要因素之一。本研究选取贵州省万山废弃汞矿区和土法炼汞区为研究区域,在水稻生长期间对稻田土壤剖面中总汞、甲基汞及形态汞进行测定,结合土壤环境因子指标,讨论土壤汞形态分布特征对甲基化的影响。研究表明,汞矿区稻田土壤中总汞和甲基汞均表现出随土壤深度加深而逐渐降低的趋势,且主要以有机结合态和残渣态形式存在,占总汞的98%以上。在废弃汞矿区,不同形态汞可能会转化为生物难以利用的形态:溶解态与可交换态、特殊吸附态与氧化态汞可能先转变为有机结合态,再转变为残渣态汞。在土法炼汞区表现为硫酸盐还原与铁还原过程驱动的汞甲基化过程,并且有机结合态汞可能也参与了甲基化过程。 |
其他语种文摘
|
The concentration of methylmercury (MeHg) in rice is usually high in mercury (Hg) contaminated areas. The Hg occurrence in soil is considered as an important factor influences methylation processes. This study analyzed total Hg (THg),MeHg,Hg occurrences and environmental factors in the rice paddy soil profiles from an abandoned mercury mining area and an artisanal mining area in Wanshan,Guizhou,and discussed effects of soil’s Hg occurrences on methylation. Results showed that concentrations of THg and MeHg in paddy soils decreased gradually along the soil profiles. Organic- bound and residual Hg forms were predominated forms,accounting for more than 98% of THg in soils. In the abandoned Hg mining area,Hg immobilized by transforming processes of from soluble,exchangeable,specifically sorbed,or/and oxide-bound Hg forms to the organic-bound Hg form and even to the residual Hg form. In the artisanal mining area, the Hg methylation were mediated by sulfate reduction and iron reduction,and the organic-bound Hg might have been involved in the methylation process. |
来源
|
矿物岩石地球化学通报
,2021,40(3):690-698 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2021.40.015
|
关键词
|
汞
;
甲基汞
;
稻田土壤
;
汞形态
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州师范学院地理与资源学院, 贵阳, 550018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
;
中国科学院西部青年学者A类项目
|
文献收藏号
|
CSCD:6969266
|
参考文献 共
43
共3页
|
1.
Cline J D. Spectrophotometric determination of hydrogen sulfide in natural waters.
Limnology and Oceanography,1969,14(3):454-458
|
CSCD被引
28
次
|
|
|
|
2.
Feng X B. Human exposure to methylmercury through rice intake in mercury mining areas,Guizhou province,China.
Environmental Science & Technology,2008,42(1):326-332
|
CSCD被引
40
次
|
|
|
|
3.
Gerbig C A. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems.
Environmental Science & Technology,2011,45(21):9180-9187
|
CSCD被引
11
次
|
|
|
|
4.
Gibbs M M. A simple method for the rapid determination of iron in natural waters.
Water Research,1979,13(3):295-297
|
CSCD被引
1
次
|
|
|
|
5.
Graham A M. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions.
Environmental Science & Technology,2012,46(5):2715-2723
|
CSCD被引
28
次
|
|
|
|
6.
Hsu-Kim H. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review.
Environmental Science & Technology,2013,47(6):2441-2456
|
CSCD被引
20
次
|
|
|
|
7.
Jay J A. Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides.
Applied and Environmental Microbiology,2002,68(11):5741-5745
|
CSCD被引
8
次
|
|
|
|
8.
Jonsson S. Mercury methylation rates for geochemically relevant HgⅡspecies in sediments.
Environmental Science & Technology,2012,46(21):11653-11659
|
CSCD被引
14
次
|
|
|
|
9.
Kalbitz K. Biodegradation of soil-derived dissolved organic matter as related to its properties.
Geoderma,2003,113(3/4):273-291
|
CSCD被引
92
次
|
|
|
|
10.
Li P. Human body burden and dietary methylmercury intake: The relationship in a riceconsuming population.
Environmental Science & Technology,2015,49(16):9682-9689
|
CSCD被引
12
次
|
|
|
|
11.
Liang L. Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry.
Talanta,1996,43(11):1883-1888
|
CSCD被引
20
次
|
|
|
|
12.
Liu J. Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation.
Environmental Pollution,2018,237:1112-1123
|
CSCD被引
3
次
|
|
|
|
13.
Lovley D R. Rapid assay for microbially reducible ferric iron in aquatic sediments.
Applied and Environmental Microbiology,1987,53(7):1536-1540
|
CSCD被引
26
次
|
|
|
|
14.
Meng B. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L. ) plants and possible bioaccumulation pathways.
Journal of Agricultural and Food Chemistry,2010,58(8):4951-4958
|
CSCD被引
45
次
|
|
|
|
15.
Meng B. The process of methylmercury accumulation in rice (Oryza sativa L. ).
Environmental Science & Technology,2011,45(7):2711-2717
|
CSCD被引
46
次
|
|
|
|
16.
Meng B. Inorganic mercury accumulation in rice (Oryza sativa L. ).
Environmental Toxicology and Chemistry,2012,31(9):2093-2098
|
CSCD被引
16
次
|
|
|
|
17.
Meng B. Localization and speciation of mercury in brown rice with implications for Pan-Asian public health.
Environmental Science and Technology,2014,48(14):7974-7981
|
CSCD被引
22
次
|
|
|
|
18.
Paquette K E. Inorganic speciation of mercury in sulfidic waters: The importance of zero-valent sulfur.
Environmental Science & Technology,1997,31(7):2148-2153
|
CSCD被引
4
次
|
|
|
|
19.
Qiu G L. Methylmercury accumulation in rice (Oryza sativa L. ) grown at abandoned mercury mines in Guizhou,China.
Journal of Agricultural and Food Chemistry,2008,56(7):2465-2468
|
CSCD被引
28
次
|
|
|
|
20.
Schaefer J K. Active transport,substrate specificity,and methylation of Hg (Ⅱ) in anaerobic bacteria.
Proceedings of the National Academy of Sciences of the United States of America,2011,108(21):8714-8719
|
CSCD被引
17
次
|
|
|
|
|