金属激光3D打印过程数值模拟应用及研究现状
Application and research status of numerical simulation of metal laser 3Dprinting process
查看参考文献60篇
文摘
|
数值模拟可以高效、有针对性地对金属激光选区熔化成型过程中的温度场、熔池形状、残余应力和变形、凝固过程微观组织演变等过程建立相应的模型并对成形件的相关性能做出准确预测,为工艺优化提供科学的依据,显著降低工艺开发成本和缩短工艺开发周期,有力推动金属增材制造向工业级应用的转变。本文综述了金属激光增材制造过程中温度场、熔池动力学、成形件内部残余应力和变形、显微组织变化4个方面数值模拟的最新研究进展,概述了金属SLM过程数值模拟所取得的最新进展,分析了金属SLM数值模拟领域的研究热点和所存在的计算时间长、成本高等问题,最后提出金属SLM过程数值模拟应将3D打印过程中快速凝固、微熔池等特征与大数据、人工智能、深度学习等技术相结合,进一步提高数值模拟精度,拓宽金属激光增材制造加工窗口,为个性化产品开发提供指导。 |
其他语种文摘
|
Numerical simulation can establish corresponding models for temperature field,molten pool shape,residential stress,microstructure evolution in the metal SLM process effectively.Meanwhile this model can accurately predict the performance of forming parts,and provide scientific basis for process parameters optimization,consequently boost the metal SLM to industry application.In this paper,the latest research progress of numerical simulation in the process of metal laser additive manufacturing was summarized,including temperature field,molten pool dynamics,residual stress and deformation in the forming part,and microstructure change.The latest progress of numerical simulation in metal SLM process was summarized,and the metal SLM process was analyzed.Finally,the future development trend was put forward that metal SLM process numerical simulation should be combined with big data,artificial intelligence,deep learning and other technologies and numerical simulation accuracy will be further improved,the processing window of metal laser additive manufacturing will be broadened,and guidance will be provided for the development of individual products. |
来源
|
材料工程
,2021,49(4):52-62 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000235
|
关键词
|
金属激光选区熔化
;
数值模拟
;
温度场
;
熔池动力学
;
残余应力及变形
|
地址
|
1.
西安理工大学材料科学与工程学院, 西安, 710048
2.
长安大学材料科学与工程学院, 西安, 710061
3.
西安建筑科技大学冶金学院, 西安, 710055
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
航空 |
基金
|
国家自然科学基金项目
;
陕西省自然科学基础研究计划项目
;
陕西省教育厅产业化培育项目
;
陕西省教育厅自然科学基金
;
陕西省自然科学基础研究计划一般青年项目
|
文献收藏号
|
CSCD:6967516
|
参考文献 共
60
共3页
|
1.
黄卫东. 材料3D打印技术的研究进展.
新型工业化,2016,6(3):53-70
|
CSCD被引
35
次
|
|
|
|
2.
王华明. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展.
西华大学学报(自然科学版),2018,37(4):9-14
|
CSCD被引
31
次
|
|
|
|
3.
卢秉恒. 增材制造技术---现状与未来.
中国信息化周报,2020
|
CSCD被引
1
次
|
|
|
|
4.
Ngo T D. Additive manufacturing(3Dprinting):a review of materials,methods,applications and challenges.
Composites Part B,2018,143:172-196
|
CSCD被引
192
次
|
|
|
|
5.
Smith J. Thermodynamically consistent microstructure prediction of additively manufactured materials.
Computational Mechanics,2016,57(3):359-370
|
CSCD被引
2
次
|
|
|
|
6.
Lewandowski J. Metal additive manufacturing:a review of mechanical properties.
Annual Review of Materials Research,2016,46(1):151-186
|
CSCD被引
56
次
|
|
|
|
7.
郭超. 电子束选区熔化增材制造技术研究进展.
工业技术创新,2017,4(4):6-14
|
CSCD被引
17
次
|
|
|
|
8.
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题.
航空学报,2014,35(10):2690-2698
|
CSCD被引
212
次
|
|
|
|
9.
Todaro C J. Grain structure control during metal 3Dprinting by high-intensity ultrasound.
Nature Communications,2020,11(1):1-9
|
CSCD被引
8
次
|
|
|
|
10.
高翔宇. 增材制造大型钛合金横梁缺陷分析.
失效分析与预防,2018,13(1):43-48
|
CSCD被引
4
次
|
|
|
|
11.
李雅莉.
选区激光熔化AlSi10Mg温度场及应力场数值模拟研究,2015
|
CSCD被引
13
次
|
|
|
|
12.
Brenner S C. Nonstandard finite element methods.
Oberwolfach Reports,2008,5(3):2027-2093
|
CSCD被引
1
次
|
|
|
|
13.
Haeri S. Discrete element simulation and experimental study of powder spreading process in additive manufacturing.
Powder Technology,2017,306:45-54
|
CSCD被引
15
次
|
|
|
|
14.
Lozanovski B. A monte carlo simulation-based approach to realistic modelling of additively manufactured lattice structures.
Additive Manufacturing,2020,32:101092
|
CSCD被引
4
次
|
|
|
|
15.
Kajima Y. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting.
Journal of the Mechanical Behavior of Biomedical Materials,2018,78:1-9
|
CSCD被引
1
次
|
|
|
|
16.
Haider Ali H G K M. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti_6Al_4V.
Materials Science and Engineering:A,2018,712:175-187
|
CSCD被引
35
次
|
|
|
|
17.
Haeri S. Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations.
Powder Technology,2017,321:94-104
|
CSCD被引
14
次
|
|
|
|
18.
Markl M. Powder layer deposition algorithm for additive manufacturing simulations.
Powder Technology,2018,330:125-136
|
CSCD被引
1
次
|
|
|
|
19.
Lin D. Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering.
Additive Manufacturing,2017,13:37-48
|
CSCD被引
1
次
|
|
|
|
20.
Lee W H. Discrete element modeling of powder flow and laser heating in direct metal laser sintering process.
Powder Technology,2017,315:300-308
|
CSCD被引
3
次
|
|
|
|
|