帮助 关于我们

返回检索结果

基于鲁棒${H_\infty }$滤波的锂离子电池SOC估计
Lithium-ion battery state of charge estimation based on a robust ${H_\infty }$ filter

查看参考文献26篇

潘凤文 1,2   弓栋梁 1,2   高莹 1,2 *   寇亚林 1,2  
文摘 荷电状态(State of charge, SOC)估计是电池管理系统的核心功能之一,它在电动汽车的生命周期中起着重要作用. 针对锂离子电池温度影响模型参数,进而导致SOC估计不准确的问题,本文提出了基于鲁棒${H_\infty }$滤波的SOC估计方法. 首先,以二阶Thevenin等效电路模型做为锂离子电池基础模型,并将温度对电池模型参数的影响建模为标称电阻值和电池总容量的加性变量,视温度变化为系统的外部扰动. 其次,采用滑动线性法对电池模型进行线性化,并在此基础上运用线性矩阵不等式技术设计了对SOC进行估计的鲁棒${H_\infty }$滤波器. 最后,分别采用四种不同类型的动态电流激励进行仿真实验验证,并将SOC的估计结果与kalman滤波对SOC的估计结果进行对比. 结果表明所设计的鲁棒${H_\infty }$滤波器能够实现对SOC更为准确的跟踪,同时对外部扰动具有较好的鲁棒性.
其他语种文摘 The state of charge(SOC)estimation is one of the core functions of the battery management system;it can play a significant role in the life cycle of electric vehicles. The SOC estimation method has attracted considerable research attention in recent years, particularly about improving estimation accuracy. However, most studies are limited by only focusing on known or fixed battery model parameters and not considering their temperature dependence. This indicates a need to explore how the lithium-ion battery temperature affects the model parameters, which leads to inaccurate SOC estimation. The principal objective of this study is to investigate the robust ${H_\infty }$ filter-based method for the problem that temperature affects battery model parameters and thus leads to inaccurate SOC estimation. First, the second-order Thevenin equivalent circuit model with two parallel resistor-capacitor pairs is taken as the basic model of the lithium-ion battery. The influence of temperature on battery model parameters is modeled as an additive variable of the nominal resistance value and the total battery capacity, and the temperature change is considered an external disturbance of the system. Afterward, the sliding linear method is used to linearize this battery model;on this basis, a robust ${H_\infty }$ filter for SOC estimation is designed using linear matrix inequality technology. Finally, the effectiveness of the proposed approach is verified using four different types of dynamic current load profiles(the BJDST-Beijing Dynamic Stress Test, FUDS-Federal Urban Driving Schedule, US06-US06 Highway Driving Schedule and BJDST-FUDS-US06 joint dynamic test)compared with the Kalman filter-based SOC estimation method. The simulation analysis results indicate that the proposed SOC estimation approach can realize a higher SOC estimation accuracy even if the model parameters vary with temperature, and it has good robustness to external disturbances.
来源 工程科学学报 ,2021,43(5):693-701 【核心库】
DOI 10.13374/j.issn2095-9389.2020.09.21.002
关键词 锂离子电池 ; SOC估计 ; 模型参数摄动 ; 模型线性化 ; ${H_\infty }$滤波器
地址

1. 吉林大学, 汽车仿真与控制国家重点实验室, 长春, 130025  

2. 吉林大学汽车工程学院, 长春, 130025

语种 中文
文献类型 研究性论文
ISSN 2095-9389
学科 电工技术
基金 国家重点研发计划资助项目
文献收藏号 CSCD:6964229

参考文献 共 26 共2页

1.  王晓兰. 基于融合模型的锂离子电池荷电状态在线估计. 工程科学学报,2020,42(9):1200 CSCD被引 11    
2.  苏伟. 锂离子电池故障诊断技术进展. 储能科学与技术,2019,8(2):225 CSCD被引 21    
3.  刘新天. 基于环境变量建模的锂电池SOC估计方法. 东南大学学报(自然科学版),2017,47(2):306 CSCD被引 7    
4.  冯代伟. 具有电流偏差和噪声扰动的H_∞观测器在线估计电池SoC状态. 电子科技大学学报,2017,46(4):547 CSCD被引 2    
5.  Lin X F. Modeling and estimation for advanced battery management. Ann Rev Control Rob Autonom Syst,2019,2:393 CSCD被引 1    
6.  Miao Z X. An SOC-based battery management system for microgrids. IEEE Trans Smart Grid,2014,5(2):966 CSCD被引 8    
7.  谈发明. 动力电池SOC估计的一种新型鲁棒UKF算法. 汽车工程,2019,41(8):944 CSCD被引 6    
8.  Cheng K W E. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol,2011,60(1):76 CSCD被引 52    
9.  Dey S. Nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. 2014 American Control Conference,2014:248 CSCD被引 1    
10.  Bhangu B S. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol,2005,54(3):783 CSCD被引 18    
11.  He H W. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies,2011,4(4):582 CSCD被引 47    
12.  丁镇涛. 基于安时积分和无迹卡尔曼滤波的锂离子电池SOC估算方法研究. 中国机械工程,2020,31(15):1823 CSCD被引 6    
13.  靳博文. 基于内阻功率消耗的锂电池SOC估计. 汽车工程,2020,42(8):1008 CSCD被引 2    
14.  Codeca F. On battery state of charge estimation: A new mixed algorithm. 2008 IEEE International Conference on Control Applications,2008:102 CSCD被引 1    
15.  Hu Y R. Battery state of charge estimation in automotive applications using LPV techniques. Proceedings of the 2010 American Control Conference,2010:5043 CSCD被引 1    
16.  Hu Y. Battery cell state-of-charge estimation using linear parameter varying system techniques. J Power Sources,2012,198:338 CSCD被引 4    
17.  Zhang Y. State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles. IET Control Theory Appl,2013,8(3):160 CSCD被引 1    
18.  Liu C Z. A state of charge estimation method based on H∞observer for switched systems of lithium-ion nickelmanganese-cobalt batteries. IEEE Trans Ind Electron,2017,64(10):8128 CSCD被引 6    
19.  Dey S. Nonlinear robust observers for state-ofcharge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans Control Syst Technol,2015,23(5):1935 CSCD被引 6    
20.  Wang T H. H∞observer-based battery fault estimation for HEV application. IFAC Proc Vol,2012,45(30):206 CSCD被引 1    
引证文献 2

1 黎冲 锂电池SOC估计的实现方法分析与性能对比 储能科学与技术,2022,11(10):3328-3344
CSCD被引 7

2 来鑫 基于剩余充电电量的锂离子电池模组内短路在线定量诊断算法 工程科学学报,2023,45(1):158-168
CSCD被引 2

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号