阳极氧化对TiAl合金高温氧化行为和力学性能的影响
Effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy
查看参考文献21篇
文摘
|
采用电化学阳极氧化技术在含NH4F的乙二醇电解液中对TiAl合金进行阳极氧化处理。研究阳极氧化对TiAl合金高温氧化行为和力学性能的影响。结果表明:由于“卤素效应”,阳极氧化处理的TiAl合金经高温氧化后表面形成致密、连续的Al_2O_3氧化膜,有效阻止了氧的内扩散,进而显著提高合金的抗高温氧化性能。经1000 ℃氧化100 h后,阳极氧化试样增重由未经阳极氧化处理试样的85.86 mg/cm~2降至0.67 mg/cm~2。另一方面,阳极氧化TiAl合金表面硬度和弹性模量随高温氧化时间延长呈先降低后升高的趋势。阳极氧化TiAl合金在高温服役后,合金的摩擦系数较未经阳极氧化处理试样上升,但表面耐磨性先降低后升高。这是由于TiAl合金经阳极氧化后,表面形成了一层富铝含氟氧化膜,由于氧化膜中F元素在高温氧化过程中与Ti、Al结合形成卤化物,卤化物蒸气选择性扩散在原始氧化膜处形成致密的Al_2O_3保护膜。阳极氧化对TiAl合金力学性能的影响主要是由于氧化膜中Al_2O_3的含量变化所致。 |
其他语种文摘
|
TiAl alloy was electrochemically anodized in ethylene glycol electrolyte containing with NH4F to prepare anodic film. The influence of anodization treatment on the oxidation behavior and mechanical properties of the anodized TiAl alloy were then characterized. Results shown that based on the halogen effect a continuous and dense Al_2O_3 oxide scale will generate on the anodized TiAl alloy after high temperature oxidation. After oxidation at 1000 ℃ for 100 h, the weight gain of the anodized TiAl alloy was dramatically decreased from 85.86 mg/cm~2 to 0.67 mg/cm~2. Moreover, it is shown that the surface hardness and elastic modulus of the anodized TiAl alloy decreased first and then increased with the prolonging of oxidation time. Meanwhile, the friction coefficient of the anodized TiAl alloy increased comparing to the bare TiAl alloy. The surface wear resistance of the anodized TiAl alloy exhibited similar phenomena. This is because that during high temperature oxidation process, aluminum fluorides selectively transport to the surface through pores or micro-cracks, and are oxidized to Al_2O_3 at the surface region. The influence of anodization treatment on the mechanical properties of the anodized TiAl alloy is attributed to the Al_2O_3 content contained in the oxide scale. |
来源
|
航空材料学报
,2021,41(2):72-81 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000129
|
关键词
|
钛铝合金
;
阳极氧化
;
高温氧化
;
卤素效应
;
力学性能
|
地址
|
1.
浙江工业大学材料科学与工程学院, 杭州, 310014
2.
军事科学院国防工程研究院, 北京, 100850
3.
中山大学材料学院, 广州, 510275
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6958233
|
参考文献 共
21
共2页
|
1.
彭小敏. TiAl基合金高温氧化及防护的研究进展.
中国有色金属学报,2010,20(6):1116-1130
|
CSCD被引
27
次
|
|
|
|
2.
Solecka M. New insight on study of Ni-base alloy clad layer after oxidation at 650℃.
Corrosion Science,2019,149:244-248
|
CSCD被引
3
次
|
|
|
|
3.
汤守巧. TiAl基合金高温抗氧化研究进展.
稀有金属,2017,41(1):81-93
|
CSCD被引
11
次
|
|
|
|
4.
Dai J J. Microstructure and high temperature oxidation behavior of Ti-Al-Nb-Si coatings on Ti-6Al-4V alloy.
Journal of Alloys and Compounds,2018,765:46-57
|
CSCD被引
6
次
|
|
|
|
5.
Xiang L. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation.
Intermetallics,2018,97:52-57
|
CSCD被引
3
次
|
|
|
|
6.
Ping F P. Alloying effects on properties of Al_2O_3 and TiO_2 in connection with oxidation resistance of TiAl.
Intermetallics,2016,68:57-62
|
CSCD被引
2
次
|
|
|
|
7.
Yang H M. Effect of Al elements on microstructure and hardness of TiAl-6Nb alloys.
Chemical Engineer,2018,32(7):14-17
|
CSCD被引
1
次
|
|
|
|
8.
Li M G. The effect of boron addition on the high-temperature properties and microstructure evolution of high Nb containing TiAl alloys.
Materials Science and Engineering: A,2018,733:190-198
|
CSCD被引
4
次
|
|
|
|
9.
Kanjer A. Improving the high temperature oxidation resistance of pure titanium by shot-peening treatments.
Surface and Coatings Technology,2018,343:93-100
|
CSCD被引
4
次
|
|
|
|
10.
Malecka J. Effect of an Al_2O_3 coating on the oxidation process of a γ-TiAl phase based alloy.
Corrosion Science,2012,63:287-292
|
CSCD被引
11
次
|
|
|
|
11.
Su Y. Oriented porous anodic oxide layers on Ti-50Al with outstanding oxidation resistance at 800℃.
Corrosion Science,2019,159:108146-10855
|
CSCD被引
3
次
|
|
|
|
12.
Mo M H. High temperature oxidation behavior and anti-oxidation mechanism of Ti50Al anodized in ionic liquid.
Surface and Coatings Technology,2016,307:190-199
|
CSCD被引
6
次
|
|
|
|
13.
Wu L K. Oxidation behavior of Ti45Al8.5Nb alloy anodized in NH_4F containing solution.
Corrosion Science,2020,166:108447-108457
|
CSCD被引
5
次
|
|
|
|
14.
Wu L K. Improving the hightemperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution.
Oxidation of Metals,2018,90(5/6):617-631
|
CSCD被引
7
次
|
|
|
|
15.
Cheng F. Friction and wear properties of a high Nb-containing TiAl alloy against WC-8Co, Si_3N_4, and GCr15 in an unlubricated contact.
Intermetallics,2019,106:7-12
|
CSCD被引
4
次
|
|
|
|
16.
Mengis L. High-temperature sliding wear behavior of an intermetallic γ-based TiAl alloy.
Wear,2019,426/427:341-347
|
CSCD被引
5
次
|
|
|
|
17.
Zschau H E. Surface chemistry evolution of F-doped Ni-base superalloy upon heat treatment.
Materials and Corrosion,2017,68(2):220-227
|
CSCD被引
2
次
|
|
|
|
18.
Donchev A. Oxidation protection of several intermetallic TixAly alloys by fluorine.
Advances in Materials and Processing Technologies,2016,2(4):471-479
|
CSCD被引
1
次
|
|
|
|
19.
Wang C. Oxidation inhibition of γ-TiAl alloy at 900℃by inorganic silicate composite coatings.
Corrosion Science,2013,76:284-291
|
CSCD被引
9
次
|
|
|
|
20.
夏俊捷. 基于卤素效应的阳极氧化技术提高Ti_(48)Al_5Nb合金抗高温氧化性能.
中国腐蚀与防护学报,2019,39(2):96-105
|
CSCD被引
2
次
|
|
|
|
|