片状粉末冶金的石墨烯/铝基复合材料制备过程控制与力学性能
Process control and mechanical properties of graphene/Al composites based on flaky powder metallurgy
查看参考文献29篇
文摘
|
石墨烯/铝复合材料具有强化效率高、强塑性协同提升、综合性能优异的特点,有望突破现有金属基复合材料强塑性匹配性差的瓶颈问题,但石墨烯的难于分散是困扰材料制备的重要问题。基于机械球磨工艺的片状粉末冶金技术可以将球状铝粉变成片状,实现石墨烯的均匀分散。本研究通过添加过程控制剂PDMS调控机械球磨过程,制备片状铝粉,结合压力浸渗技术制备0.6% (质量分数)GNPs/6061Al复合材料。结果表明:随着球磨时间延长,片状铝粉直径呈先上升后稳定的状态;随过程控制剂黏度上升,片状铝粉直径上升,铝粉片状化效果更明显,同时石墨烯缺陷含量先降低后上升。结合组织表征和力学性能测试,讨论了材料性能与组织结构间的关系。 |
其他语种文摘
|
Graphene/Al composites have the characteristics of high strengthening efficiency, synergistic improvement of strong plasticity, and excellent comprehensive performance, which is expected to break through the bottleneck problem of poor strengthplasticity matching of metal matrix composites. However, the dispersion of graphene is an important issue that plagues the preparation of materials. The flaky powder metallurgy technology based on the mechanical ball-milling process can transform the spherical aluminum powder into flakes and realize the uniform dispersion of graphene. In this study, the mechanical ball-milling process was controlled by adding a process control agent (polydimethylsiloxane, PDMS) to prepare flaky Al powder, combined with pressure infiltration technology to prepare 0.6%(mass fraction) GNPs/6061Al composites. The results show that the diameter of flaky aluminum powder increases first and then stabilizes with the prolongation of milling time. As the viscosity of process control agent increases, the diameter of flaky aluminum powder is increased, and the flaky effect of aluminum powder is more obvious. At the same time, the viscosity of graphene defect content decreases first and then increases. Moreover, it is revealed that the graphene defects show a decreasing and increasing change pattern as the viscosity increased. Combined with the structure characterization and mechanical property test, the relationship between properties and structure is discussed, which has provided a reference for the subsequent preparation of graphene/Al composites. |
来源
|
航空材料学报
,2021,41(2):45-52 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000184
|
关键词
|
石墨烯
;
铝基复合材料
;
片状粉末冶金
;
变形机制
;
构效关系
|
地址
|
1.
哈尔滨工业大学材料科学与工程学院, 哈尔滨, 150090
2.
上海无线电设备研究所, 上海, 200082
3.
宁德时代新能源科技股份有限公司, 福建, 宁德, 352000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
中国博士后科学基金
;
黑龙江省博士后专项资助经费
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6958230
|
参考文献 共
29
共2页
|
1.
Balandin A A. Superior thermal conductivity of single-layer graphene.
Nano Letters,2008,8(3):902-907
|
CSCD被引
1071
次
|
|
|
|
2.
Reina A. Transferring and identification of single-and few-layer graphene on arbitrary substrates.
Journal of Physical Chemistry C,2008,112(46):17741-17744
|
CSCD被引
34
次
|
|
|
|
3.
Bastwros M. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering.
Composites Part B,2014,60:111-118
|
CSCD被引
35
次
|
|
|
|
4.
Li Z. Enhanced mechanical properties of graphene(reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure.
Nano Letters,2015,15(12):8077-8083
|
CSCD被引
47
次
|
|
|
|
5.
Zhao L. Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites.
Metallurgical and Materials Transactions A,2019,50(3):1113-1118
|
CSCD被引
3
次
|
|
|
|
6.
Han T. Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling.
Carbon,2020,159:311-323
|
CSCD被引
10
次
|
|
|
|
7.
Jiang Y. Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites.
Carbon,2020,158:449-455
|
CSCD被引
6
次
|
|
|
|
8.
Yu Z. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method.
Carbon,2019,141:25-39
|
CSCD被引
25
次
|
|
|
|
9.
Shao P. Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method.
Carbon,2020,162:455-464
|
CSCD被引
10
次
|
|
|
|
10.
Xu R. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling.
Composites Part A,2017,96:57-66
|
CSCD被引
14
次
|
|
|
|
11.
Wu X. Thermal conductivity of defective graphene:an efficient molecular dynamics study based on graphics processing units.
Nanotechnology,2020,31(21):215708
|
CSCD被引
3
次
|
|
|
|
12.
Zhang H. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion.
Materials Science and Engineering:A,2016,658:8-15
|
CSCD被引
29
次
|
|
|
|
13.
Liu X. In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites.
Materials Science and Engineering:A,2018,709:65-71
|
CSCD被引
12
次
|
|
|
|
14.
Liu X. Effectively reinforced load transfer and fracture elongation by forming Al4C3 for insitu synthesizing carbon nanotube reinforced Al matrix composites.
Materials Science and Engineering: A,2018,718:182-189
|
CSCD被引
10
次
|
|
|
|
15.
Zhang X. A powder-metallurgy-based strategy toward three-dimensional graphenelike network for reinforcing copper matrix composites.
Nature Communications,2020,11(1):2775
|
CSCD被引
23
次
|
|
|
|
16.
Ju J M. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties.
Journal of Alloys and Compounds,2017,704:585-592
|
CSCD被引
8
次
|
|
|
|
17.
Wu Y. Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy.
Journal of Alloys and Compounds,2019,775:233-240
|
CSCD被引
6
次
|
|
|
|
18.
燕绍九. 石墨烯增强铝基纳米复合材料研究进展.
航空材料学报,2016,36(3):57-70
|
CSCD被引
21
次
|
|
|
|
19.
赵双赞. 石墨烯纳米片增强铝基复合材料的动态力学行为.
材料工程,2019,47(3):23-29
|
CSCD被引
4
次
|
|
|
|
20.
Li J L. Microstructure and Tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling.
Materials Science and Engineering: A,2015,626:400-405
|
CSCD被引
33
次
|
|
|
|
|