环境pH对微生物生物膜吸附重金属的影响研究进展
Research Progress of the Effect of pH on the Adsorption of Heavy Metals by Microbial Biofilms
查看参考文献78篇
文摘
|
重金属污染以其强毒性、富集性和持久性成为全球性的环境难题。在现有的重金属污染治理技术中,基于微生物生物膜的修复技术因其高效、低成本、可持续等优势,在预防、控制和修复重金属污染等方面被广泛应用,成为了新兴研究热点技术。为了进一步揭示微生物生物膜与重金属之间的内在关系。本文通过对最近二十年微生物生物膜吸附重金属等方面的文献进行系统整理和总结,详细阐述了微生物生物膜吸附重金属的吸附机理、吸附数学模型和pH对微生物生物膜的影响,特别对影响该技术的重要参数pH进行了系统阐述并总结了pH影响微生物生物膜修复技术的原理及规律,以期为未来研发和改进微生物生物膜去除重金属污染的生产应用工艺提出科学性的指导意见与建议。 |
其他语种文摘
|
Heavy metal pollution has become a global environmental problem due to the strong toxicity, high bio-enrichment and non-degradation of heavy metals. Among different heavy metal pollution treatment technologies, microbial biofilm-based remediation technology has been widely used in the prevention, control and remediation aspects due to the advantages of high efficiency, low cost and high sustainability, and this technlogy has become an emerging research hotspot. In order to further uncover the relationship between microbial biofilms and heavy metals, this article systematically investigated the literature on the adsorption of heavy metals by microbial biofilms in the past two decades. And the adsorption mechanism, adsorption related mathematical models and effects of pH on microbial biofilms were also elaborated. In particular, the importance of pH that is identified as a factor affecting the treatment effect of the microbial biofilm technology was highlighted and systematically elaborated. This review will provide scientific suggestions and supports for future research on microbial biofilm based heavy metal removals. |
来源
|
地球与环境
,2021,49(2):216-226 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2020.48.105
|
关键词
|
重金属
;
微生物生物膜
;
pH
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
中国科学院第四纪科学与全球变化卓越创新中心, 中国科学院第四纪科学与全球变化卓越创新中心, 西安, 710061
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1672-9250 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
;
国家重点研发计划课题
;
中国科学院启动经费
;
中国科学院战略性先导科技专项
;
中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
;
山东大学微生物技术国家重点实验室基金
|
文献收藏号
|
CSCD:6954338
|
参考文献 共
78
共4页
|
1.
Yang Q. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.
Science of the Total Environment,2018,642(15):690-700
|
CSCD被引
58
次
|
|
|
|
2.
Zhou Q. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017.
Global Ecology and Conservation,2020,22:1-11
|
CSCD被引
1
次
|
|
|
|
3.
Xu S. Characterization of Cd~(2+) biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China.
Chemosphere,2020,240:1-7
|
CSCD被引
1
次
|
|
|
|
4.
Zheng S. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China.
Food Chemistry,2020,316(30):1-9
|
CSCD被引
1
次
|
|
|
|
5.
Vardhan K H. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives.
Journal of Molecular Liquids,2019,290(15):1-22
|
CSCD被引
28
次
|
|
|
|
6.
Valente A J M. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review.
Journal of Environmental Management,2019,246(15):101-108
|
CSCD被引
39
次
|
|
|
|
7.
Ghosh A. Recent advances in bioremediation of heavy metals and metal complex dyes: Review.
Journal of Environmental Engineering,2016,142(9):1-14
|
CSCD被引
8
次
|
|
|
|
8.
Rangabhashiyam S. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae.
Bioresource Technology Reports,2019,5:261-279
|
CSCD被引
4
次
|
|
|
|
9.
Ojuederie O B. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review.
International Journal of Environmental Research and Public Health,2017,14(12):1-26
|
CSCD被引
22
次
|
|
|
|
10.
Guibaud G. Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling.
Chemosphere,2006,64(11):1955-1962
|
CSCD被引
12
次
|
|
|
|
11.
Zhang R. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon.
New Biotechnology,2019,51:21-30
|
CSCD被引
2
次
|
|
|
|
12.
Ma L. Assembly and development of the pseudomonas aeruginosa biofilm matrix.
PLOS Pathogens,2009,5(3):1-11
|
CSCD被引
1
次
|
|
|
|
13.
Stewart P S. Physiological heterogeneity in biofilms.
Nature Reviews Microbiology,2008,6:199-210
|
CSCD被引
34
次
|
|
|
|
14.
Aguilera A. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption.
Aquatic Toxicology,2008,88(4):257-266
|
CSCD被引
4
次
|
|
|
|
15.
Fulaz S. Nanoparticle-biofilm interactions: The role of the EPS matrix.
Trends in Microbiology,2019,27(11):915-926
|
CSCD被引
15
次
|
|
|
|
16.
Flemming H C. Biofilms: An emergent form of bacterial life.
Nature Reviews Microbiology,2016,14(9):563-575
|
CSCD被引
143
次
|
|
|
|
17.
Yi Y J. Potential use of lactic acid bacteria leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity.
Journal of Microbiology,2017,55(4):296-303
|
CSCD被引
4
次
|
|
|
|
18.
Mosbah R. Biosorption of heavy metals by streptomyces species-An overview.
Central European Journal of Chemistry,2013,11(9):1412-1422
|
CSCD被引
2
次
|
|
|
|
19.
Li D. Characterization of Pb~(2+) biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China.
Journal of Environmental Management,2017,196(1):8-15
|
CSCD被引
4
次
|
|
|
|
20.
Barquilha C E R. Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp.
Journal of Cleaner Production,2017,150(1):58-64
|
CSCD被引
2
次
|
|
|
|
|