含铁颗粒物的溶解动力学研究进展
Dissolution kinetics of iron-containing particles: A review
查看参考文献72篇
文摘
|
气溶胶沉降是开放大洋可溶性铁的主要来源之一,对海洋初级生产力有重要影响.目前气溶胶可溶性铁的沉降通量仍存在很大的不确定性.主要原因包括:(1)不同来源的气溶胶中可溶性铁的含量差异较大;(2)发生在大气传输中的化学反应能够显著影响气溶胶中铁元素的可溶性.本文总结了过去20a国内外关于含铁颗粒物溶解动力学实验室研究的主要结果,以阐明液相反应对铁可溶性的增强作用.归纳了典型含铁颗粒物在质子促进溶解、配体促进溶解及光还原溶解机制作用下的溶解动力学特征,指出pH值、阴离子类型和光照决定了含铁颗粒物的溶解机制,以及铁的存在形式是决定颗粒物中铁潜在可溶性的最主要因素,最后简单展望该领域未来的发展方向. |
其他语种文摘
|
Aerosol deposition is one of the primary sources of soluble iron in the open ocean, having significant impacts on the oceanic primary productivity. However, large uncertainties in the deposition flux of soluble iron from aerosol particles still remain, due to the following reasons: 1) iron solubility varies largely for aerosol particles from different sources; 2) chemical reaction during atmospheric transport would significantly affect iron solubility of aerosol particles. Laboratory studies of dissolution kinetics of iron-containing particles in aqueous solutions in the past 20 years have been reviewed in this paper, to assess the enhancement effects on iron solubility by atmospheric aqueous reactions. Dissolution kinetics of iron-containing particles have been summarized for proton-promoted dissolution, ligand-promoted dissolution and photoreductive dissolution mechanisms. In addition, pH, anion components and light radiation jointly determined the dissolution mechanisms of iron-containing particles; and iron speciation is the major factor which determines the potential solubility of iron. Lastly, an outlook for future research was also presented. |
来源
|
中国环境科学
,2021,41(4):1555-1563 【核心库】
|
关键词
|
大气颗粒物
;
铁的可溶性
;
溶解动力学
;
液相反应
;
矿物学特征
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6923 |
学科
|
环境科学基础理论;环境污染及其防治 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
有机地球化学国家重点实验室自主课题资助项目
|
文献收藏号
|
CSCD:6950554
|
参考文献 共
72
共4页
|
1.
Shi J H. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the yellow sea.
Deep Sea Research Part II: Topical Studies in Oceanography,2013,97:43-50
|
CSCD被引
24
次
|
|
|
|
2.
Jickells T D. Atmospheric transport of trace elements and nutrients to the oceans.
Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,2016,374(2081)
|
CSCD被引
5
次
|
|
|
|
3.
Moore C M. Processes and patterns of oceanic nutrient limitation.
Nature Geoscience,2013,6(9):701-710
|
CSCD被引
37
次
|
|
|
|
4.
Baker A R. Atmospheric and marine controls on aerosol iron solubility in seawater.
Marine Chemistry,2010,120(1/4):4-13
|
CSCD被引
18
次
|
|
|
|
5.
Jickells T D. Global iron connections between desert dust, ocean biogeochemistry, and climate.
Science,2005,308(5718):67-71
|
CSCD被引
136
次
|
|
|
|
6.
Shi Z. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review.
Aeolian Research,2012,5:21-42
|
CSCD被引
17
次
|
|
|
|
7.
Meskhidze N. Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface.
Marine Chemistry,2019:217
|
CSCD被引
4
次
|
|
|
|
8.
Mahowald N M. Atmospheric global dust cycle and iron inputs to the ocean.
Global Biogeochemical Cycles,2005,19(4)
|
CSCD被引
29
次
|
|
|
|
9.
Mahowald N M. Atmospheric iron deposition: Global distribution, variability, and human perturbations.
Annual Review of Marine Science,2009,1:245-278
|
CSCD被引
13
次
|
|
|
|
10.
Shao Y P. Dust cycle: An emerging core theme in earth system science.
Aeolian Research,2011,2(4):181-204
|
CSCD被引
79
次
|
|
|
|
11.
Maters E C. Atmospheric processing of volcanic glass: Effects on iron solubility and redox speciation.
Environmental Science & Technology,2016,50(10):5033-5040
|
CSCD被引
1
次
|
|
|
|
12.
Maters E C. Controls on iron mobilization from volcanic ash at low pH: Insights from dissolution experiments and Mossbauer spectroscopy.
Chemical Geology,2017,449:73-81
|
CSCD被引
1
次
|
|
|
|
13.
Fu H. Solubility of iron from combustion source particles in acidic media linked to iron speciation.
Environ Sci Technol,2012,46(20):11119-11127
|
CSCD被引
8
次
|
|
|
|
14.
Chen H. Coal fly ash as a source of iron in atmospheric dust.
Environ Sci Technol,2012,46(4):2112-2120
|
CSCD被引
6
次
|
|
|
|
15.
Shi J H. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the yellow sea.
China. Journal of Geophysical Research: Atmospheres,2012,117(D17)
|
CSCD被引
1
次
|
|
|
|
16.
Tagliabue A. How well do global ocean biogeochemistry models simulate dissolved iron distributions?.
Global Biogeochemical Cycles,2016,30(2):149-174
|
CSCD被引
6
次
|
|
|
|
17.
Boyd P W. Aerosol iron deposition to the surface ocean-modes of iron supply and biological responses.
Marine Chemistry,2010,120(1/4):128-143
|
CSCD被引
7
次
|
|
|
|
18.
Baker A R. Mineral particle size as a control on aerosol iron solubility.
Geophysical Research Letters,2006,33(17)
|
CSCD被引
19
次
|
|
|
|
19.
Kim D. Atmospheric processing of anthropogenic combustion particles: Effects of acid media and solar flux on the iron mobility from fly ash.
ACS Earth and Space Chemistry,2020,4(5):750-761
|
CSCD被引
2
次
|
|
|
|
20.
Schroth A W. Iron solubility driven by speciation in dust sources to the ocean.
Nature Geoscience,2009,2(5):337-340
|
CSCD被引
18
次
|
|
|
|
|