帮助 关于我们

返回检索结果

赣北石门寺钨多金属矿床成矿流体演化过程:白钨矿微区成分限定
Evolution of ore-forming fluids in Shimensi tungsten polymetallic deposit of northern Jiangxi:Constraints from in situ trace element analysis of scheelite

查看参考文献49篇

陈长发 1   高剑峰 2 *   张清清 2,3   闵康 2,3  
文摘 大湖塘钨矿地处江南造山带中段,为一大型钨-钼-铜多金属矿田,由4个矿床组成,其中石门寺矿床规模最大。文章利用LA-ICP-MS对石门寺矿床石英脉型钨矿中的白钨矿进行单矿物原位微区分析,以揭示成矿流体演化过程。研究表明,石英脉中的白钨矿可划分为2期,其中,早期白钨矿与黑钨矿、黑云母及石英共生,而晚期白钨矿在石英大脉中仅与石英共生。前者表现为右倾型稀土元素配分模式,而后者则显示平坦型稀土元素配分模式,两者均具Eu正异常。此外,早期白钨矿较晚期白钨矿具有较高的ΣREE、Mo、Sn、Nb、Ta、Y含量,但Sr含量较低。早期白钨矿表现出LREE富集型和较高的ΣREE、Nb、Ta含量,说明成矿流体来源于岩浆热液,从早期到晚期成矿流体中Eu由Eu~(2+)为主转变为Eu~(3+)为主,表明流体演化过程中氧逸度升高,暗示成矿晚期有氧化性大气降水加入。早期高LREE、Sn、Nb、Ta含量的白钨矿的沉淀以及辉钼矿结晶显著改变成矿流体的组成,导致晚期白钨矿具平坦型REE配分模式和低Mo、Sn、Nb、Ta的特征。此外,在流体演化过程中,新元古代花岗闪长岩中斜长石因为蚀变分解持续为成矿热液提供Eu和Sr,造成白钨矿Eu正异常和晚期白钨矿中Sr含量的升高。
其他语种文摘 Located in the middle of the Jiangnan Orogenic Belt,the world-class Dahutang W-Mo-Cu orefield is composed of four deposits,of which the Shimensi deposit is the largest one.In order to reveal the evolution process of ore-forming fluids,the authors carried out in-situ LA-ICP-MS trace element analysis of scheelite from quartzvein type mineralization in the Shimensi deposit.Studies have shown that scheelite has two generations.The early generation of scheelite in the quartz-vein is associated with wolframite,biotite and quartz,whereas the late generation only coexists with quartz.The former shows a right-leaning REE partition pattern,while the latter one shows flat REE partition curve,with both of them having Eu positive anomalies.In addition,early generation has higher ΣREE,Mo,Sn,Nb,Ta and Y but lower Sr content than late generation.LREE-enrichment and high ΣREE,Nb and Ta content of early generation indicate that the ore-forming fluids were dominantly derived from magmatic hydrothermal fluids.Eu in the early and late ore-forming fluids were dominated by Eu~(2+) and Eu~(3+),respectively,suggesting that oxygen fugacity increased during the evolution of ore-forming fluids and recycled meteoric water might have been added into the fluids in the later stage.The precipitation of molybdenite and early scheelite with high LREE,Sn,Nb and Ta had significantly lower REE,Sn,Nb,Ta and Mo in evolved fluids,leading to flat REE partition curve and low Mo,Sn,Nb and Ta characteristics in later generation.In addition,the Eu normal anomaly and increasing Sr content in scheelite in late stage may have resulted from the decomposition of plagioclase in Neoproterozoic granodiorite.
来源 矿床地质 ,2021,40(2):293-310 【核心库】
DOI 10.16111/j.0258-7106.2021.02.007
关键词 地球化学 ; 白钨矿 ; 成矿流体演化 ; 微量元素 ; 稀土元素 ; 石门寺钨多金属矿床
地址

1. 长安大学地球科学与资源学院, 陕西, 西安, 710054  

2. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081  

3. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0258-7106
学科 地质学
基金 国家重点研发计划 ;  国家自然科学基金国家杰出青年科学基金
文献收藏号 CSCD:6949082

参考文献 共 49 共3页

1.  Bai T B. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta,1999,63(7/8):1117-1131 CSCD被引 40    
2.  Bau M. Comparative study of yttrium and rareearth behaviors in fluorine-rich hydrothermal fluids. Contributions to Mineralogy & Petrology,1995,119(2):213-223 CSCD被引 197    
3.  Brugger J. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, western Australia). Contributions to Mineralogy & Petrology,2000,139(3):251-264 CSCD被引 52    
4.  Brugger J. Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, western Australia. Chemical Geology,2002,182(2):203-225 CSCD被引 32    
5.  Brugger J. Oxidation state of europium in scheelite: Tracking fluidrock interaction in gold deposits. Chemical Geology,2008,257(1/2):26-33 CSCD被引 32    
6.  Burt D M. Compositional and phase relations among rare earth elements. Reviews in Mineralogy,1989,21:259-307 CSCD被引 4    
7.  Eugster B P. Transport and deposition of oreforming elements in hydrothermal systems associated with gra-nites,1985:87-98 CSCD被引 1    
8.  Ghaderi M. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, western Australia. Econ. Geol,1999,94(3):423-437 CSCD被引 65    
9.  Hsu L C. Origin of the scheelite-powellite series of minerals. Econ. Geol,1973,68(5):681-696 CSCD被引 19    
10.  Li X Y. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite. Ore Geology Reviews,2018,99:180-194 CSCD被引 18    
11.  Liu Y S. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257(1/2):34-43 CSCD被引 1843    
12.  Mao Z H. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the JiangxinProvince,China. OreGeologyReviews,2013,53(3):422-433 CSCD被引 53    
13.  Mao Z H. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research,2015,28(2):816-836 CSCD被引 47    
14.  Nassau K. Calcium tungstate-III: Trivalent rare earth substitution. Journal of Physics & Chemistry of Solids,1963,24(12):1503-1510 CSCD被引 13    
15.  Peng J T. The ore-forming fluid with a marked radiogenic ~(87) Sr signature from the Woxi Au-Sb-W deposit and its significant implications. Bulletin of Mineralogy Petrology Geochemistry,2003,22(3):193-196 CSCD被引 1    
16.  Rempel K U. The partitioning of molybdenum between aqueous liquid and vapour at temperatures up to 370°C. Geochimica et Cosmochimica Acta,2009,73(11):3381-3392 CSCD被引 27    
17.  Schonenberger J. REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland. Chemical Geology,2008,247(1/2):16-35 CSCD被引 30    
18.  Song G. Scheelite elemental and isotopic signatures: Implications for the genesis of skarntype W-Mo deposits in the Chizhou area, Anhui Province, eastern China. American Mineralogist,2014,99(2/3):303-317 CSCD被引 9    
19.  Sun K K. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist,2017,102(5):1114-1128 CSCD被引 34    
20.  Tomschi H P. Geochemical and mineralogical data on the genesis of the Mazowe gold field in the Harare Bindura greenstone belt, Zimbabwe. Geocongress. 86,1986:345-348 CSCD被引 1    
引证文献 5

1 肖为 桂北广子田铀钨矿床成因---沥青铀矿原位U-Pb定年、矿物地球化学证据 地质论评,2022,68(3):831-844
CSCD被引 3

2 任康达 江南钨矿带桂林郑富钼白钨矿稀土元素的富集机制及其地质意义 矿床地质,2022,41(4):859-877
CSCD被引 3

显示所有5篇文献

论文科学数据集

1. 喜马拉雅造山带吉隆-康玛-亚东-南迦巴瓦岩浆岩全岩主微量地球化学数据集

2. 贵州织金和瓮安磷矿化学成分数据集

3. 佛子冲矿区微量元素、主量元素、U-Pb测年数据及部分矿物的电子探针数据集

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号