NiTi基形状记忆合金弹热效应及其应用研究进展
Research progress in elastocaloric effect and its application of NiTi-based shape memory alloys
查看参考文献78篇
文摘
|
NiTi合金作为性能最优异的形状记忆合金之一,已经广泛应用于航空航天、电子、建筑、生物医学等领域。近年来,NiTi基合金极佳的力学性能、巨大的弹热效应和良好的机械加工性使其在弹热制冷领域引起了广泛关注。然而,传统NiTi二元合金超弹性应力滞后大,超弹性和弹热效应循环稳定性差,达不到实际应用所需的长期服役要求。本文介绍了NiTi基合金的弹热效应研究进展,从掺杂合金元素、热机械处理、改变制备方法等角度综述了近几年NiTi基合金弹热效应改进优化的研究进展,同时本文也简要介绍了已经开发的基于NiTi基合金的弹热装置或原型机。但是目前NiTi基合金弹热材料的研究和原型机的开发仍处于实验阶段,实现其商业化应用需要进一步深入研究和优化,未来前者研究重点将集中在材料小型化、合金化或特殊处理及改变循环方式等方面,后者也将从提高热量传输效率、加强热量交换、减小摩擦等损耗、改进机械负载和循环模式等方面不断优化和完善。 |
其他语种文摘
|
NiTi-based shape memory alloys (SMAs)are one of the SMAs with most outstanding properties,and have been widely applied in aviation,space,electronics,construction,biomedicine and other fields.In recent years,the elastocaloric refrigeration based on elastocaloric effect(eCE)of NiTi alloys has attracted increasing attentions since their excellent mechanical properties,huge elastocaloric strength and good machinability.However,conventional binary NiTi alloys cannot meet the requirements of long-life service since their large superelastic stress hysteresis and poor cyclic stability of superelasticity and eCE.In this paper,the research progress of eCE for NiTi-based alloys was reviewed.The effect of doping alloying element,thermomechanical treatment and novel processing techniques on eCE of NiTi-based alloys were surnmarized.In addition,the developed elastocaloric devices or prototypes based on NiTi-based alloys were also briefly introduced.However, the current researches on NiTi-based elastocaloric materials and the development of prototypes are still in the experimental stage.To realize their commercial application requires further in-depth research and optimization.In the future,the research priorities for the former will concentrate on material miniaturization,alloying or applying special treatment as well as changing circulation methods and so on.On the other hand,the research priorities for the latter will focus on improving heat transfer efficiency,strengthening heat exchange,reducing friction and other losses,and improving mechanical loadings as well as circulation modes. |
来源
|
材料工程
,2021,49(3):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000780
|
关键词
|
NiTi基合金
;
弹热效应
;
固体制冷
;
R相变
;
超弹性
;
循环稳定性
|
地址
|
1.
哈尔滨工业大学材料科学与工程学院, 哈尔滨, 150001
2.
山东大学材料科学与工程学院, 济南, 250014
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6939275
|
参考文献 共
78
共4页
|
1.
Moya X. Caloric materials near ferroic phase transitions.
Nature Materials,2014,13:439-450
|
CSCD被引
52
次
|
|
|
|
2.
Goetzler W.
Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies,2014
|
CSCD被引
4
次
|
|
|
|
3.
Bonnot E. Elastocaloric effect associated with the martensitic transition in shape-memory alloys.
Physical Review Letters,2008,100(12):125901
|
CSCD被引
25
次
|
|
|
|
4.
Manosa L. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys.
Applied Physics Letters,2013,103:211904
|
CSCD被引
12
次
|
|
|
|
5.
Xu S. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5 Mn11shape memory alloy.
APL Materials,2016,4:106106
|
CSCD被引
5
次
|
|
|
|
6.
Cui J. Demonstration of high efficiency elastocaloric cooling with largeΔT using NiTi wires.
Applied Physics Letters,2012,101:073904
|
CSCD被引
17
次
|
|
|
|
7.
Zhu X J. Elastocaloric effects related to B_2R and B_2B19'martensite transformations in nanocrystalline Ni50.5Ti49.5microwires.
Journal of Alloys and Compouds,2019,792:780-788
|
CSCD被引
1
次
|
|
|
|
8.
Chen H. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%)alloy.
Acta Materialia,2018,158:330-339
|
CSCD被引
8
次
|
|
|
|
9.
Nikitin S A. Giant elastocaloric effect in FeRh alloy.
Physics Letters A,1992,171(3/4):234-236
|
CSCD被引
10
次
|
|
|
|
10.
Xiao F. Significant elastocaloric effect in a Fe-31.2Pd(at.%)single crystal.
Applied Physics Letters,2013,102:161914
|
CSCD被引
12
次
|
|
|
|
11.
Xiao F. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%)alloy.
Acta Materialia,2015,87:8-14
|
CSCD被引
6
次
|
|
|
|
12.
Lu B F. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy.
Applied Physics Letters,2014,105:161905
|
CSCD被引
17
次
|
|
|
|
13.
Xu Y. Large and reversible elastocaloric effect in dual-phase Ni_(54)Fe_(19)Ga_(27) superelastic alloys.
Applied Physics Letters,2015,106:201903
|
CSCD被引
10
次
|
|
|
|
14.
Yang Z. Large elastocaloric effect in a Ni-Co-Mn-Sn magnetic shape memory alloy.
Materials & Design,2016,92:932-936
|
CSCD被引
8
次
|
|
|
|
15.
Franco V. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models.
Annual Review of Materials Research,2012,42:305-342
|
CSCD被引
48
次
|
|
|
|
16.
Smith A. Materials challenges for high performance magnetocaloric refrigeration devices.
Advanced Energy Materials,2012,2(11):1288-1318
|
CSCD被引
16
次
|
|
|
|
17.
Valant M. Electrocaloric materials for future solid-state refrigeration technologies.
Progress in Materials Science,2012,57:980-1009
|
CSCD被引
33
次
|
|
|
|
18.
Manosa L. Materials with giant mechanocaloric effects:cooling by strength.
Advanced Materials,2017,29(11):1603607
|
CSCD被引
19
次
|
|
|
|
19.
Cazorlar C. Novel mechanocaloric materials for solid-state cooling applications.
Applied Physics Review,2019,6(4):041316
|
CSCD被引
6
次
|
|
|
|
20.
Buehler W J. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi.
Journal of Applied Physics,1963,34:1475
|
CSCD被引
61
次
|
|
|
|
|