斜爆轰发动机燃烧机理试验研究
Experimental Research on Combustion Mechanism of Oblique Detonation Engines
查看参考文献27篇
文摘
|
为了研究斜爆轰发动机的稳定燃烧机理,开展了飞行马赫数9的斜爆轰发动机的数值模拟研究和试验研究。设计了全尺度斜爆轰发动机模型,发动机的总长度为2.8m。采用两级进气道压缩,每级压缩角度均为15°。利用三个小支板在进气道前缘主流核心区中进行氢气的喷射和混合。采用带化学反应的雷诺平均N-S方程、SST k-ω模型以及9组分19步反应的基元反应模型,对氢气混合过程和发动机燃烧过程进行了数值模拟研究。结果表明,氢气在进气道内混合得比较均匀,在燃烧室内获得了稳定的斜爆轰流场和正爆轰流场。在激波风洞中开展了马赫数9状态下的斜爆轰发动机稳定燃烧机理试验研究,在50ms的风洞有效试验时间内获得了持续稳定的斜爆轰流场,试验结果与数值模拟结果吻合较好,表明在试验中形成了斜爆轰波。研究结果证明了斜爆轰发动机的技术可行性。 |
其他语种文摘
|
Numerical simulations and experiments of a Ma 9 oblique detonation engine were conducted to study the combustion mechanism of oblique detonation engines.Firstly,a full-scale engine model with a length of 2.8m was designed.The engine inlet is a two-stage compression inlet composed of two 15°-inclined ramps.The hydrogen is pre-injected into the main flow at the leading front of the inlet by three strut-injectors.Secondly,the mixing process at the inlet and the combustion process in the combustor were numerically simulated.In the numerical simulations,the governing equations are Reynolds average Navier-Stokes equations with SST k-ω turbulence model and 9-species and 19-recations detailed chemical reaction kinetics.The numerical results show that the mixing process of hydrogen along the inlet is good.The stable oblique detonation waves and normal detonation waves are obtained in the combustor.Finally,the experiments under Ma 9 flight conditions were conducted in the shock tunnel.The stable flow fields of oblique detonation engine were established in the duration of 50ms test time of the shock tunnel.The experimental results are in good agreements with numerical results which means that stable oblique detonation waves were successfully obtained in the shock tunnel experiments.This research results demonstrate the technical feasibility of oblique detonation engines. |
来源
|
推进技术
,2021,42(4):786-794 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.200828
|
关键词
|
斜爆轰发动机
;
超声速燃烧
;
激波诱导燃烧
;
斜爆轰波
;
斜激波
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6939203
|
参考文献 共
27
共2页
|
1.
Ferri A. Review of Problems in Application of Supersonic Combustion.
The Aeronautical Journal,1964,68:575-597
|
CSCD被引
4
次
|
|
|
|
2.
Ferri A. Review of Scramjet Propulsion Technology.
Journal of Aircraft,1968,5(1):3-10
|
CSCD被引
3
次
|
|
|
|
3.
Ferri A. Mixing-Controlled Supersonic Combustion.
Annual Review of Fluid Mechanics,1973,5(1):301-338
|
CSCD被引
12
次
|
|
|
|
4.
Curran E R. Scramjet Engines:The First Forty Years.
Journal of Propulsion and Power,2001,17(6):1138-1148
|
CSCD被引
75
次
|
|
|
|
5.
乐嘉陵. 吸气式高超声速技术研究进展.
推进技术,2010,31(6):4-12
|
CSCD被引
1
次
|
|
|
|
6.
俞刚. 超声速燃烧与高超声速推进.
力学进展,2013,43(5):449-471
|
CSCD被引
37
次
|
|
|
|
7.
王振国. 高超声速飞行器动力系统研究进展.
力学进展,2009,39(6):716-739
|
CSCD被引
43
次
|
|
|
|
8.
Pratt D T. Morphology of Standing Oblique Detonation Waves.
Journal of Propulsion and Power,1991,7(5):837-845
|
CSCD被引
26
次
|
|
|
|
9.
Rubins P M. Review of Shock-Induced Supersonic Combustion Research and Hypersonic Applications.
Journal of Propulsion and Power,1994,10(5):593-600
|
CSCD被引
4
次
|
|
|
|
10.
Chan J. Numerically Simulated Comparative Performance of a Scramjet and Shcramjet at Mach 11.
Journal of Propulsion and Power,2010,26(5):1125-1134
|
CSCD被引
15
次
|
|
|
|
11.
Alexander D C. Computational Study of the Propulsive Characteristics of a Shcramjet Engine.
Journal of Propulsion and Power,2008,24(1):34-44
|
CSCD被引
9
次
|
|
|
|
12.
陈楠. 当量比对斜爆轰波诱导区特性影响的数值模拟研究.
推进技术,2018,39(12):2798-2805
|
CSCD被引
7
次
|
|
|
|
13.
Valorani M. Performance Prediction for Oblique Detonation Wave Engines(ODWE).
Acta Astronautica,2001,48(4):211-228
|
CSCD被引
5
次
|
|
|
|
14.
Lu F K. Detonation Waves Induced by a Confined Wedge.
Aerospace Science and Technology,2006,10(8):679-685
|
CSCD被引
4
次
|
|
|
|
15.
Morris C I. Shock-Induced Combustion in High-Speed Wedge Flows.
Symposium (International) on Combustion,1998,27(2):2157-2164
|
CSCD被引
9
次
|
|
|
|
16.
Sosa J. Shock-Induced High-Speed Reactions in High Enthalpy Hypersonic Flow.
AIAA Scitech 2020 Forum,2020
|
CSCD被引
1
次
|
|
|
|
17.
Wolanski P. Detonative Propulsion.
Proceedings of the Combustion Institute,2013,34(1):125-158
|
CSCD被引
105
次
|
|
|
|
18.
Huang W. Research Status of Key Techniques for Shock-Induced Combustion Ramjet (Shcramjet)Engine.
Science in China Series E:Technological Sciences,2010,53(1):220-226
|
CSCD被引
4
次
|
|
|
|
19.
Ma K F. Aerodynamic Principles of Shock-Induced Combustion Ramjet Engines.
Aerospace Science and Technology,2020
|
CSCD被引
1
次
|
|
|
|
20.
Zhang Z J. Numerical Investigation of a Mach 9 Oblique Detonation Engine with Fuel Pre-Injection.
Aerospace Science and Technology,2020
|
CSCD被引
1
次
|
|
|
|
|