斜爆轰波系在受限空间内的演变及其临界条件的数值研究
Numerical Study on Structural Evolution and Transitional Criteria of Oblique DetonationWaves in Confined Space
查看参考文献31篇
文摘
|
针对斜爆轰发动机简化模型,采用多组分基元化学反应流动数值模拟技术,数值分析了斜爆轰波系在受限空间内的宏观结构特征及其演变,并进一步分析了爆轰波系结构转变的临界条件。研究结果发现,随着楔面角度的增加,依次出现四种结构:激波诱导燃烧、斜爆轰波双规则反射、回流区马赫反射、楔面燃烧。对于稳定的波系结构,楔面压缩角同时存在下临界、亚临界以及超临界三种极限条件,在波系演变过程还伴随激波规则反射和马赫反射的转变。 |
其他语种文摘
|
Numerical techniques for multi-species chemical reacting flows are applied to study the macrostructures of oblique detonation waves in confined space.The key features,the evolution of the overall wave structure,and the transitional criteria are analysed.The results show that with the increase of wedge angle,four structures appear in turn:shock-induced combustion,oblique detonation double regular reflection,Mach reflection in reflux zone,and wedge combustion.The simulations reveal three critical conditions of the compression angle for the maintenance of stable wave structures,i.e.,lower-critical,sub-critical,and upper critical conditions.In addition,the transition between regular and Mach reflections occurs during the evolution process of the macro wave structure. |
来源
|
推进技术
,2021,42(4):738-744 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.200758
|
关键词
|
斜爆轰发动机
;
波系结构
;
临界条件
;
受限空间
;
激波反射
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6939198
|
参考文献 共
31
共2页
|
1.
Lee J H S.
The Detonation Phenomenon,2008
|
CSCD被引
67
次
|
|
|
|
2.
Wolanski P. Detonative Propulsion.
Proceedings of the Combustion Institute,2013,34:125-158
|
CSCD被引
107
次
|
|
|
|
3.
Anand V. Rotating Detonation Combustors and Their Similarities to Rocket Instabilities.
Progress in Energy and Combustion Science,2019,73:182-234
|
CSCD被引
17
次
|
|
|
|
4.
滕宏辉. 斜爆震发动机的流动与燃烧机理.
中国科学:物理学力学天文学,2020,50(9)
|
CSCD被引
1
次
|
|
|
|
5.
Jiang Z. On theory and methods for advanced detonation-driven hypervelocity shock tunnels.
National Science Review,2020(7):1198-1207
|
CSCD被引
5
次
|
|
|
|
6.
滕宏辉. 斜爆轰的多波结构及其稳定性研究进展.
力学进展,2019,50(20)
|
CSCD被引
1
次
|
|
|
|
7.
姜宗林.
气体爆轰物理及其统一框架理论,2020
|
CSCD被引
7
次
|
|
|
|
8.
Gross R A. Oblique Detonation Waves.
AIAA Journal,1963,1(5)
|
CSCD被引
4
次
|
|
|
|
9.
Pratt D T. Morphology of Standing Oblique Detonation Waves.
Journal of Propulsion and Power,1991(7):837-845
|
CSCD被引
28
次
|
|
|
|
10.
Li C. Detonation Structures behind Oblique Shocks.
Physics of Fluids,1994(6):1600-1611
|
CSCD被引
35
次
|
|
|
|
11.
Viguier C. Onset of Oblique Detonation Waves:Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixtures.
Symposium (International) on Combustion. 26,1996:3023-3031
|
CSCD被引
2
次
|
|
|
|
12.
Teng H H. On the Transition Pattern of the Oblique Detonation Structure.
Journal of Fluid Mechanics,2012,713:659-669
|
CSCD被引
31
次
|
|
|
|
13.
Miao S. Formation Mechanisms and Characteristics of Transition Patterns in Oblique Detonations.
Acta Astronautica,2018,142:121-129
|
CSCD被引
11
次
|
|
|
|
14.
Yang P. Effects of Inflow Mach Number on Oblique Detonation Initiation with a Two-Step Induction-Reaction Kinetic Model.
Combustion and Flame,2018,193:246-256
|
CSCD被引
13
次
|
|
|
|
15.
Choi J Y. Cell-Like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation.
Proceedings of the Combustion Institute,2007,31:2473-2480
|
CSCD被引
30
次
|
|
|
|
16.
Teng H H. Numerical Study on Unstable Surfaces of Oblique Detonations.
Journal of Fluid Mechanics,2014,744:111-128
|
CSCD被引
23
次
|
|
|
|
17.
Verreault J. Formation of Transverse Waves in Oblique Detonations.
Proceedings of the Combustion Institute,2013,34:1913-1920
|
CSCD被引
8
次
|
|
|
|
18.
Iwata K. Numerical Investigation of the Effects of Nonuniform Premixing on Shock-Induced Combustion.
AIAA Journal,2016,54:1682-1692
|
CSCD被引
2
次
|
|
|
|
19.
Iwata K. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture.
Proceedings of the Combustion Institute,2017,36:2761-2769
|
CSCD被引
10
次
|
|
|
|
20.
Fang Y. Numerical Study of Inflow Equivalence Ratio Inhomogeneity on Oblique Detonation Formation in Hydrogen-Air Mixtures.
Aerospace Science and Technology,2017,71:256-263
|
CSCD被引
13
次
|
|
|
|
|