帮助 关于我们

返回检索结果

海量用户评论在APP更新设计中的参与作用挖掘
Mining the participatory role of massive user reviews in the update design of APP software

查看参考文献38篇

文摘 APP市场上用户发表的评论包含着对APP软件研发团队的有用信息,尤其是软件功能请求以及具有特定应用的用户体验内容,可以应用到APP软件的版本更新设计中.为了研究海量用户评论在APP软件更新和重新设计中的参与作用,本文提出一种基于词向量表征的句向量相似性计算模型,它可以用于度量来自更新日志文本和用户评论文本中的句子的相似性.然后,本文提出了APP产品的“更新日志-用户评论”匹配算法将不同语义匹配结果划分到不同的数据集.基于真实的APP市场上采集的海量APP软件升级日志数据和用户评论数据的实验证明了本文提出方法的有效性.研究结果还发现:APP开发团队对于用户评论内容的采纳不到20%,而且采纳的内容主要集中在APP软件功能方面.用户评论中众多内容指向企业的营销活动问题,这部分内容由于研发团队在企业运营中的管理角色所限,很少能够顾及.
其他语种文摘 The user reviews published on APP market contain useful information for the APP R&D team. In order to study the influence and mode of user reviews on APP software update design, we propose a sentence vector similarity calculation model based on word vector representation, which can be used to measure the similarity of sentences from update log text and user comment text. Then, we propose a "log-comment" matching algorithm to divide the different semantic matching result into different data sets. By collecting a large amount of APP software update logs and user reviews from an open APP market, our method found that the APP development team adopted less than 20% of the user reviews, and the content adopted was mainly focused on the APP software function. Many of the user reviews pointed to the marketing activities, however, these reviews can rarely be considered and corrected in the new version of an APP. It was partly due to the limited role of R&D team in company's daily operation.
来源 系统工程理论与实践 ,2021,41(3):554-564 【核心库】
DOI 10.12011/setp2019-1136
关键词 文本挖掘 ; APP软件 ; 版本更新设计 ; 用户评论
地址

电子科技大学经济与管理学院, 成都, 611731

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:6938759

参考文献 共 38 共2页

1.  Kim S J. The effects of adopting and using a brand's mobile application on customers' subsequent purchase behavior. Journal of Interactive Marketing,2015,31:28-41 CSCD被引 1    
2.  Boyd D E. Branded Apps and their impact on firm value: A design perspective. Journal of Marketing Research,2019,56(1):76-88 CSCD被引 2    
3.  Palomba F. User reviews matter! Tracking crowdsourced reviews to support evolution of successful Apps. Proceedings of the 31st International Conference on Software Maintenance and Evolution,2015:291-300 CSCD被引 1    
4.  Roman L. Participatory design for user-generated content: Understanding the challenges and moving forward. Scandinavian Journal of Information Systems,2016,28(1):37-70 CSCD被引 1    
5.  Martin W. A survey of App store analysis for software engineering. IEEE Transactions on Software Engineering,2017,43(9):817-847 CSCD被引 10    
6.  Noei E. Too many user-reviews, what should App developers look at first?. IEEE Transactions on Software Engineering,2019 CSCD被引 1    
7.  Pagano D. User feedback in the appstore: An empirical study. Proceedings of the 21st International Conference on Requirements Engineering,2013:125-134 CSCD被引 1    
8.  Vasa R. A preliminary analysis of mobile app user reviews. Proceedings of the 24th Australian Computer-Human Interaction Conference,2012:241-244 CSCD被引 2    
9.  Seyff N. Using mobile RE tools to give end-users their own voice. 18th IEEE International Requirements Engineering Conference,2010:37-46 CSCD被引 1    
10.  Palomba F. Recommending and localizing change requests for mobile Apps based on user reviews. Proceedings of the 39th International Conference on Software Engineering,2017:106-117 CSCD被引 1    
11.  Panichella S. How can I improve my app? Classifying user reviews for software maintenance and evolution. Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME),2015:281-290 CSCD被引 1    
12.  Iacob C. What are you complaining about? A study of online reviews of mobile applications. Proceedings of the 27th International BCS Human Computer Interaction Conference,2013:1-6 CSCD被引 1    
13.  Maalej W. Toward data-driven requirements engineering. IEEE Software,2016,33(1):48-54 CSCD被引 2    
14.  Villarroel L. Release planning of mobile Apps based on user reviews. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE),2016:14-24 CSCD被引 1    
15.  Keertipati S. Approaches for prioritizing feature improvements extracted from App reviews. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering,2016:33 CSCD被引 1    
16.  Guzman E. Ensemble methods for App review classification: An approach for software evolution. 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),2015:771-776 CSCD被引 1    
17.  Maalej W. Bug report, feature request, or simply praise? On automatically classifying App reviews. 2015 IEEE 23rd International Requirements Engineering Conference (RE),2015:116-125 CSCD被引 1    
18.  Gu X D. What parts of your Apps are loved by users?. 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),2015:760-770 CSCD被引 1    
19.  冉猛. APP软件的用户评论模式分析方法. 计算机科学,2017,44(11):181-186 CSCD被引 1    
20.  Eyecioglu A. Twitter paraphrase identification with simple overlap features and SVMS. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015),2015:64-69 CSCD被引 1    
引证文献 5

1 张文 在线商品评论有用性主题分析及预测研究 系统工程理论与实践,2022,42(10):2757-2768
CSCD被引 4

2 刘伟 企业自建在线创新社区中反馈对用户持续创新贡献的影响研究——新产品开发阶段的调节效应 系统工程理论与实践,2022,42(10):2769-2781
CSCD被引 1

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号