帮助 关于我们

返回检索结果

基于群偏好与用户偏好协同演化的群推荐方法
Group recommendation method based on co-evolution of group preference and user preference

查看参考文献51篇

刘业政 1,2   吴锋 1,2   孙见山 1,2 *   杨露 1,2  
文摘 群推荐系统已经成为社交网络平台的重要工具,为群体用户提供兼顾个性化和整体满意度的产品和服务.现有群推荐方法大多是对个性化推荐方法的集成和聚合,忽略了群体和用户的交互影响以及群偏好和成员偏好的动态变化,从而无法保障群推荐系统的效果.为此,本文提出一种基于群偏好和用户偏好协同演化的群推荐方法,能够建模群体和用户的动态交互.具体而言,本文将用户偏好建模成其历史偏好和群影响的加权聚合结果,将群偏好建模成群历史偏好和新加入成员偏好的加权聚合结果,最终预测群体可能消费的产品列表和成员可能加入的群体列表.实验结果表明,本文所提模型在群体消费行为和用户加群行为的预测表现都优于基准算法,并兼具很好的鲁棒性.
其他语种文摘 The group recommender system has become an important tool of social platforms to provide personalized and satisfied products or services for groups. However, existing methods of group recommendation mainly focus on improving the personalized recommendation methods, not only ignoring the interaction of users and groups, but also neglecting the dynamics of user preferences and group preferences. These interaction process and dynamic evolution are essential to group recommendation. Therefore, this paper proposes a dynamic group recommendation method based on the co-evolution of user preferences and group preferences to model the dynamic interaction between users and groups. Specifically, we model the user preferences as a weighted aggregation of user historical preferences and group influence, and model the group preferences as a weighted combination of group historical preferences and new members' preferences. Finally, we aim to predict users' joining behaviors and group consumption behaviors. We also carry out extensive experiments using real data to evaluate the effectiveness of our model. The experimental results show that the proposed model not only achieve better performances on predicting both joining and consumption behaviors, but also is robustness.
来源 系统工程理论与实践 ,2021,41(3):537-553 【核心库】
DOI 10.12011/setp2020-1301
关键词 群推荐 ; 协同演化 ; 群偏好 ; 群消费行为 ; 加群行为 ; 时序概率矩阵分解
地址

1. 合服工业大学管理学院, 合肥, 230009  

2. 过程优化与智能决策教育部重点实验室, 过程优化与智能决策教育部重点实验室, 合肥, 230009

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 自动化技术、计算机技术
基金 国家自然科学基金重点项目 ;  国家自然科学基金 ;  国家自然科学基金创新研究群体项目 ;  国家自然科学基金面上项目
文献收藏号 CSCD:6938758

参考文献 共 51 共3页

1.  王刚. 基于联合概率矩阵分解的群推荐方法研究. 计算机学报,2019,42(1):98-110 CSCD被引 9    
2.  何军. 国外群推荐聚集策略研究综述. 图书情报工作,2013(7):127-133 CSCD被引 3    
3.  McCarthy J F. MUSICFX: An arbiter of group preferences for computer supported collaborative workouts. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work,1998:363-372 CSCD被引 6    
4.  Pizzutilo S. Group modeling in a public space: Methods, techniques, experiences. Proceedings of the 5th WSEAS International Conference on Applied Informatics and Communications,2005:175-180 CSCD被引 2    
5.  Kim J K. A group recommendation system for online communities. International Journal of Information Management,2010,30(3):212-219 CSCD被引 17    
6.  Ortega F. Incorporating group recommendations to recommender systems: Alternatives and performance. Information Processing & Management,2013,49(4):895-901 CSCD被引 9    
7.  Kassak O. Personalized hybrid recommendation for group of users: Top-n multimedia recommender. Information Processing & Management,2016,52(3):459-477 CSCD被引 6    
8.  Terry D J. Group norms and the attitude-behavior relationship: A role for group identification. Personality and Social Psychology Bulletin,1996,22(8):776-793 CSCD被引 6    
9.  Forsyth D R. Group dynamics. 7th,2018 CSCD被引 1    
10.  Liu Q. Enhancing collaborative filtering by user interest expansion via personalized ranking. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2012,42(1):218-233 CSCD被引 31    
11.  Cai Y. Typicality-based collaborative filtering recommendation. IEEE Transactions on Knowledge and Data Engineering,2014,26(3):766-779 CSCD被引 19    
12.  邓晓懿. 基于情境聚类和用户评级的协同过滤推荐模型. 系统工程理论与实践,2013,33(11):2945-2953 CSCD被引 20    
13.  Salakhutdinov R. Probabilistic matrix factorization. Proceedings of the 20th International Conference on Neural Information Processing Systems,2008:1257-1264 CSCD被引 5    
14.  Ma H. Sorec: Social recommendation using probabilistic matrix factorization. Proceedings of the 17th ACM Conference on Information and Knowledge Management,2008:931-940 CSCD被引 79    
15.  Ma H. Learning to recommend with social trust ensemble. Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval,2009:203-210 CSCD被引 42    
16.  Guo L. Learning to recommend with social relation ensemble. Proceedings of the 21st ACM International Conference on Information and Knowledge Management,2012:2599-2602 CSCD被引 2    
17.  Yang X. On top-k recommendation using social networks. Proceedings of the 6th ACM Conference on Recommender Systems,2012:67-74 CSCD被引 1    
18.  Yang X. Circle-based recommendation in online social networks. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012:1267-1275 CSCD被引 8    
19.  Jamali M. Trustwalker: A random walk model for combining trust-based and item-based recommendation. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009:397-406 CSCD被引 33    
20.  Zhou T C. UserRec: A user recommendation framework in social tagging systems. Proceedings of the 24th AAAI Conference on Artificial Intelligence,2010:1486-1491 CSCD被引 1    
引证文献 4

1 陈宝童 群智协同任务分配研究综述 计算机工程与应用,2021,57(20):1-12
CSCD被引 4

2 何喜军 基于属性异构网络表示学习的专利交易推荐 情报学报,2022,41(11):1214-1228
CSCD被引 1

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号