含孔隙富铝聚四氟乙烯/铝含能材料冲击温升规律
Impact Temperature Rise Law of Porous Aluminum-rich PTFE/Al Energetic Material
查看参考文献23篇
文摘
|
为研究孔隙度对富铝含量聚四氟乙烯/铝(PTFE/Al)含能材料冲击温升效应的影响,采用考虑熔化效应的一维粘塑性孔洞塌缩模型,对该材料的冲击温升进行了理论分析。建立孔隙度分别为10%、20%、30%的富铝PTFE/Al细观离散化模型,并借助非线性动力有限元软件AUTODYN开展细观数值模拟,对冲击加载下含孔隙富铝PTFE/Al含能材料的孔洞压缩及温升规律进行了分析。通过分离式霍普金森压杆实验对数值模拟结果进行了验证。结果表明:材料内部温度随着入射杆的周期性加载总体呈现出间歇性升高的现象;在压缩过程中,材料内部温度升高主要受孔洞内径速度和屈服强度的影响,且孔隙度为10%的富铝PTFE/Al含能材料(质量配比50/50,试件尺寸ϕ8mm×5mm)相比孔隙度为20%和30%的富铝含量PTFE/Al含能材料,其温度升高最高。研究结果可为PTFE/Al含能材料的工程化应用提供参考。 |
其他语种文摘
|
In order to obtain the influence of porosity on the temperature rise effect of aluminum-rich PTFE/Al energetic materials, an one-dimensional viscoplastic cavity collapse model considering the melting effect is used to theoretically analyze the impact temperature rise of the material. A micro-discrete model of aluminum-rich PTFE/Al with porosity of 10%, 20%, and 30% was established, and the numerical simulation was performed with the help of AUTODYN nonlinear dynamic finite element software to analyze the pore compression and temperature rise of porous aluminum-rich PTFE/Al energetic materials under impact loading. In addition, the numerically simulated result was validated through a split Hopkinson pressure bar (SHPB) experiment. The results show that the internal temperature of the material generally increases intermittently with the periodic loading of the incident bar; during the compression process, the temperature rise of porous aluminum-rich PTFE/Al energetic materials is mainly affected by the hole inner diameter velocity a·and the yield strength Y; compared with 20% and 30% porosity aluminum-rich PTFE/Al energetic materials, the 10% porosity aluminum-rich PTFE/Al energetic materials have the highest temperature rise during material compression. |
来源
|
兵工学报
,2021,42(2):225-233 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2021.02.001
|
关键词
|
含能材料
;
聚四氟乙烯/铝
;
孔隙度
;
细观模拟
;
冲击温升
|
地址
|
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6938279
|
参考文献 共
23
共2页
|
1.
Koch E C.
Metal-fluorocarbon based energetic materials,2012:6-17
|
CSCD被引
3
次
|
|
|
|
2.
Shen Y B.
The chemical and mechanical behaviors of polymer/reactive metal systems under high strain rates,2012:9-34
|
CSCD被引
1
次
|
|
|
|
3.
Wu J X. Investigation on mechanical properties and reaction characteristics of Al-PTFE composites with different Al particle size.
Advances in Materials Science and Engineering,2018:ID 2767563
|
CSCD被引
1
次
|
|
|
|
4.
Mcgregor N M. Plate impact experiments on a porous teflon aluminum mixture.
AIP Conference Proceedings,2004,706(1)
|
CSCD被引
1
次
|
|
|
|
5.
Dolgoborodov A Y. Detonation in an aluminum-Teflon mixture.
Journal of Experimental & Theoretical Physics Letters,2005,81(7):311-314
|
CSCD被引
18
次
|
|
|
|
6.
Koch E C.
Review on thermo chemical codes,2011:7-31
|
CSCD被引
1
次
|
|
|
|
7.
Feng B. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors.
Materials & Design,2016,108:411-417
|
CSCD被引
18
次
|
|
|
|
8.
乌布力艾散·麦麦提图尔荪. 基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟.
复合材料学报,2016,33(11):2528-2536
|
CSCD被引
8
次
|
|
|
|
9.
Duan Z P. A pore collapse model for hot-spot ignition in shocked multi-component explosives.
International Journal of Nonlinear Sciences and Numerical Simulation,2010,11(Supplement):19-23
|
CSCD被引
16
次
|
|
|
|
10.
Whitworth N J.
Mathematical and numerical modeling of shock initiation in heterogeneous solid explosives,2008
|
CSCD被引
2
次
|
|
|
|
11.
张振宇. 多孔TNT炸药中热点形成的粘塑性塌缩机理.
含能材料,1994,2(2):36-48
|
CSCD被引
7
次
|
|
|
|
12.
Meyers M A.
Mechanical behavior of materials,1998:62-97
|
CSCD被引
1
次
|
|
|
|
13.
Frey R B. The initiation of explosive charges by rapid shear.
Proceedings of the 7th Symposium on Detonation,1981
|
CSCD被引
1
次
|
|
|
|
14.
Wang L. Investigation on reaction energy, mechanical behavior and impact insensitivity of W-PTFE-Al composites with different W percentage.
Materials & Design,2016,92:397-404
|
CSCD被引
31
次
|
|
|
|
15.
李尉. Al/PTFE活性材料的动态力学行为和撞击点火特性.
含能材料,2020,28(1):38-45
|
CSCD被引
8
次
|
|
|
|
16.
Jiang C L. Effect of porosity on dynamic mechanical properties and impact response characteristics of high aluminum content PTFE/Al energetic materials.
Materials,2020,13(1):140-150
|
CSCD被引
6
次
|
|
|
|
17.
门建兵.
爆炸冲击数值模拟技术基础,2015:97-146
|
CSCD被引
1
次
|
|
|
|
18.
徐松林.
Al/PTFE含能反应材料力学性能研究,2010:109-120
|
CSCD被引
3
次
|
|
|
|
19.
李建光. Johnson-Cook本构方程的参数标定.
兰州理工大学学报,2012,38(2):164-167
|
CSCD被引
26
次
|
|
|
|
20.
王芳. 钨铜射流成形的细观数值模拟分析.
兵工学报,2018,39(2):245-253
|
CSCD被引
2
次
|
|
|
|
|