帮助 关于我们

返回检索结果

社会网络用户心理健康自动评估研究综述
A Review on Automatic Assessment of Mental Health for Social Network Users

查看参考文献69篇

李静 1,2   刘德喜 1,3 *   万常选 1,3   刘喜平 1,3   邱祥庆 1,2   鲍力平 1   朱廷劭 4  
文摘 心理健康问题正迅速成为世界范围内最严重和最普遍的公共卫生问题之一。社会网络的兴起与普及带来大量与社会网络用户心理状态相关的数据。近年来,利用社会网络数据自动评估检测用户心理健康的研究吸引着越来越多的学者,取得了不少成果,但未见对这些成果进行总结分析的工作。该文对社会网络用户心理健康自动评估的相关文献进行评述:在现有文献基础上总结归纳了心理健康自动评估的概念及界定;从评估任务、社会网络数据集构造、评估用到的特征等方面概述了社会网络用户心理健康自动评估的国内外研究现状;比较分析了现有自动评估方法的特点,包括基于特征工程的方法和基于深度学习的方法;总结了现有研究存在的问题和面临的挑战,包括评估性能问题、数据质量问题、隐私伦理问题、原因抽取问题和自动干预问题等。未来的研究应该结合其他数据流,并需要患者、临床医生和数据科学家之间开展更大的合作,以使机器学习在心理健康问题的原因提取、预防疏导等方面得到新的应用。
其他语种文摘 Mental health problems are increasingly becoming one of the most serious and widespread public health issues in the world.The rise and popularity of social network brings a lot of data related to psychological state of its users.The research of applying social network data to automatically evaluate and detect users'mental health status has attracted more and more scholars in recent years.This paper reviews the relevant literature on the automatic assessment of mental health for social network users.Based on the existing literature,we sum up the concept and definition of automatic assessment of mental health,review the related researches at home and abroad from different aspects of assessment task,social network data-sets construction,the characteristics used in the assessment and so on.The characteristics of existing methods including feature engineering based methods and deep learning based methods are compared.Finally,we discuss the problems and challenges for this task,including assessment performance, data quality,privacy ethics,reason extraction and automatic intervention.Future research is suggested to combine other data streams and collaborate between patients,clinicians and data scientists to apply machine learning in causation extraction,prevention and counseling of mental health problems.
来源 中文信息学报 ,2021,35(2):19-32 【核心库】
关键词 社会网络 ; 心理健康 ; 自动评估
地址

1. 江西财经大学信息管理学院, 江西, 南昌, 330013  

2. 福建江夏学院电子信息科学学院, 福建, 福州, 350108  

3. 江西财经大学, 数据与知识工程江西省高校重点实验室, 江西, 南昌, 330013  

4. 中国科学院心理研究所, 北京, 100101

语种 中文
文献类型 综述型
ISSN 1003-0077
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  江西省教育厅重点项目 ;  福建省科技厅引导性项目 ;  福建省中青年教师教育科研项目 ;  江西财经大学2019年度研究生创新专项资金项目
文献收藏号 CSCD:6934837

参考文献 共 69 共4页

1.  Peng Z. Multi-kernel SVM based depression recognition using social media data. International Journal of Machine Learning and Cybernetics,2019,10(1):43-57 CSCD被引 3    
2.  Liang X. Investigation of College Students' Mental Health Status via Semantic Analysis of Sina Microblog. Wuhan University Journal of Natural Sciences,2015,20(2):159-164 CSCD被引 4    
3.  Baxter A. Global prevalence of anxiety disorders:A systematic review and meta-regression. Psychological Medicine,2012,43(5):897-910 CSCD被引 26    
4.  朱廷劭. 论大数据时代的心理学研究变革. 新疆师范大学学报(哲学社会科学版),2015,36(4):100-107 CSCD被引 6    
5.  Rey-Villamizar N. A semi-supervised approach for the CLPsych 2016shared task. Proceedings of the 3rd Workshop on Computational Linguistics and Clinical Psychology:From Linguistic Signal to Clinical Reality,2016:171-175 CSCD被引 2    
6.  Ernala S K. Methodological gaps in predicting mental health states from social media:Triangulating diagnostic signals. Proceedings of the 2019CHI Conference on Human Factors in Computing Systems,2019:134 CSCD被引 1    
7.  Zhou T H. Psychological disorder identifying method based on emotion perception over social networks. International Journal of Environmental Research and Public Health,2019,16(6):953 CSCD被引 2    
8.  张勇辉. 创伤后应激障碍. 国外医学(精神病学分册),2001(3):159-162 CSCD被引 6    
9.  Wang T. Detecting and characterizing eating-disorder communities on social media. Proceedings of the 10th ACM International Conference on Web Search and Data Mining,2017:91-100 CSCD被引 1    
10.  Gaur M. Knowledge-aware assessment of severity of suicide risk for early intervention. Proceedings of WWW'19 the World Wide Web Conference,2019:514-525 CSCD被引 1    
11.  Tsugawa S. Recognizing depression from Twitter activity. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,2015:3187-3196 CSCD被引 4    
12.  O'Dea B. Detecting suicidality on Twitter. Internet Interventions,2015,2(2):183-188 CSCD被引 2    
13.  Guan L. Identifying Chinese microblog users with high suicide probability using internet-based profile and linguistic features:Classification model. JMIR Mental Health,2015,2(2):e17 CSCD被引 4    
14.  Nadeem M. Identifying depression on Twitter. arXiv: 1607.07384,2016 CSCD被引 2    
15.  Birjali M. A method proposed for estimating depressed feeling tendencies of social media users utilizing their data. Proceedings of the 16th International Conference on Hybrid Intelligent Systems(HIS 2016),2016:413-420 CSCD被引 1    
16.  Braithwaite S R. Validating machine learning algorithms for Twitter data against established measures of suicidality. JMIR Mental Health,2016,3(2):e21 CSCD被引 2    
17.  Coppersmith G. Exploratory analysis of social media prior to a suicide attempt. Proceedings of the 3rd Workshop on Computational Linguistics and Clinical Psychology:From Linguistic Signal to Clinical Reality,2016:106-117 CSCD被引 1    
18.  Chancellor S. Quantifying and predicting mental illness severity in online proeating disorder communities. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing,2016:1171-1184 CSCD被引 1    
19.  Saravia E. MIDAS: Mental illness detection and analysis via social media. Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM),2016:1418-1421 CSCD被引 1    
20.  Malmasi S. Predicting post severity in mental health forums. Proceedings of the 3rd Workshop on Computational Linguistics and Clinical Psychology:From Linguistic Signal to Clinical Reality,2016:133-137 CSCD被引 2    
引证文献 1

1 许洛 机器学习在心理求助行为预测中的应用与进展 中华行为医学与脑科学杂志,2024,33(12):1136-1141
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号