含BCC/B2共格结构多主元合金研究进展
Research progress in multi-principal element alloys containing coherent BCC/B2 structure
查看参考文献68篇
文摘
|
引入共格析出相是强化合金的重要方式。近年来发现在BCC结构多主元合金中引入共格B2相可有效提升其力学性能,形成了一类重要的合金体系。本文综述了含BCC/B2共格结构多主元合金的研究现状,重点讨论这一系列新型合金在成分、组织形貌、结构稳定性以及力学性能等方面的特征,并指出此类合金在宽温域下强度较高、塑性因成分差异而不同的变化特点。目前,这类合金在高于500℃时的结构稳定性较差,无法满足工程应用的需求,而成分设计是解决此问题较为简单易行的方法。本文旨在为含BCC/B2共格结构多主元合金的设计提供参考。 |
其他语种文摘
|
Introducing coherent precipitates is an important method to strengthen alloys.Recently,it is found that the introduction of coherent B2 phase in multi-principal element alloys with BCC structure can improve the mechanical properties significantly,developing a new class of important series alloys.The up-to-date knowledge of these alloys from the perspectives of composition, microstructure,phase stability,and mechanical properties was summarized.These alloys exhibit high yield strength over a wide temperature regime,but the ductility presents different characterization due to the compositional difference.At present,their engineering application is limited due to their weaker thermal stability at elevated temperature,especially above 500 ℃,and furthermore,the design of compositional content appears to be more easy method to resolve the problem.This paper aims at providing guidance to further design of multi-principal element alloys with coherent BCC/B2 dual-phases. |
来源
|
材料工程
,2021,49(2):1-9 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000351
|
关键词
|
多主元合金
;
共格相
;
有序BCC相
;
结构稳定性
;
力学性能
|
地址
|
1.
北京理工大学材料学院, 北京, 100081
2.
北京理工大学前沿交叉科学研究院, 北京, 100081
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6934474
|
参考文献 共
68
共4页
|
1.
Werinos M. Design strategy for controlled natural aging in Al-Mg-Si alloys.
Acta Materialia,2016,118:296-305
|
CSCD被引
16
次
|
|
|
|
2.
Kim S H. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.
Nature,2015,518(7537):77-79
|
CSCD被引
82
次
|
|
|
|
3.
吕昭平. 高熵合金的变形行为及强韧化.
金属学报,2018,54(11):1553-1566
|
CSCD被引
56
次
|
|
|
|
4.
Zhao H L. Effects of trace alloying elements Fe and Cr on the microstructure and aging properties of Cu-3Ti alloy foils.
Metals,2018,8(11):881
|
CSCD被引
3
次
|
|
|
|
5.
信思树. 体心立方BCC基多主元合金中的共格析出及强化.
材料导报,2020,34(7):7130-7137
|
CSCD被引
2
次
|
|
|
|
6.
Jiang S H. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
Nature,2017,544(7651):460-464
|
CSCD被引
160
次
|
|
|
|
7.
Dorin T. Effect of Sc and Zr addition on the microstructure/strength of Al-Cu binary alloys.
Materials Science and Engineering:A,2017,707:58-64
|
CSCD被引
14
次
|
|
|
|
8.
Mochugovskiy A G. The mechanism of L12phase precipitation, microstructure and tensile properties of Al-Mg-Er-Zr alloy.
Materials Science and Engineering:A,2019,744:195-205
|
CSCD被引
9
次
|
|
|
|
9.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1318
次
|
|
|
|
10.
Cantor B. Microstructural development in equiatomic multicomponent alloys.
Materials Science and Engineering:A,2004,375/377:213-218
|
CSCD被引
657
次
|
|
|
|
11.
Zhang K. Effect of annealing on the microstructure,microhardness,and corrosion resistance of Ni62Nb33Zr5 metallic glass and its composites.
Journal of Non-Crystalline Solids,2015,425:46-51
|
CSCD被引
1
次
|
|
|
|
12.
Guo S. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase.
Intermetallics,2013,41:96-103
|
CSCD被引
66
次
|
|
|
|
13.
Zhang Y. Guidelines in predicting phase formation of high-entropy alloys.
MRS Communications,2014,4(2):57-62
|
CSCD被引
42
次
|
|
|
|
14.
Guo S. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys.
Journal of Applied Physics,2011,109:103505
|
CSCD被引
200
次
|
|
|
|
15.
Yang X. Prediction of high-entropy stabilized solid-solution in multi-component alloys.
Materials Chemistry and Physics,2012,132:233-238
|
CSCD被引
214
次
|
|
|
|
16.
Singh A K. A geometrical parameter for the formation of disordered solid solutions in multicomponent alloys.
Intermetallics,2014,53:112-119
|
CSCD被引
17
次
|
|
|
|
17.
Toda-Caraballo I. A criterion for the formation of high entropy alloys based on lattice distortion.
Intermetallics,2016,71:76-87
|
CSCD被引
10
次
|
|
|
|
18.
Lu Y P. Directly cast bulk eutectic and near-eutectic high enropy alloys with balanced strength and ductility in a wide temperature range.
Acta Materialia,2017,124:143-150
|
CSCD被引
161
次
|
|
|
|
19.
Lu Y P. A promising new class of hightemperature alloys:eutectic high-entropy alloys.
Scientific Reports,2014,4:6200
|
CSCD被引
176
次
|
|
|
|
20.
Wu Z. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures.
Acta Materialia,2014,81:428-441
|
CSCD被引
152
次
|
|
|
|
|