锂同位素与大陆风化
Lithium isotopes and continental weathering
查看参考文献103篇
文摘
|
气候变化与大气二氧化碳浓度息息相关。大陆岩石圈风化是影响大气二氧化碳浓度的重要过程。通过还原陆壳古风化信息,我们可以有效地了解地球气候条件的演化历史。传统方法上,前人曾使用锶同位素示踪大陆风化,但其解释尚有不足。例如,海水锶同位素比值会受到海洋热液的影响,而河流锶同位素比值则易受风化岩石类型的影响。此外,只有硅酸盐风化被认为在长时间尺度控制着大气碳汇,但锶的碳酸盐风化却与硅酸盐风化很难分辨。因此,我们需要一种更理想的同位素体系作为示踪大陆风化历史的介质。锂,作为微量元素,主要集中在岩石圈的硅酸盐矿物中,在碳酸盐岩含量较少。所以,硅酸盐风化可以使用锂同位素予以记录。同时,锂同位素受生物分馏效应影响较小,可以在海相碳酸盐岩中保存良好。这些优势为海相碳酸盐岩的锂同位素信号示踪大陆风化历史提供了有力支撑,但我们仍需对风化、迁移和结晶等过程的锂同位素地球化学行为有清晰的认识。为此,本文回顾不同储库的锂同位素组成以及各物相间锂元素配分和同位素分馏特征,总结了近年来锂同位素在重建大陆风化历史方面的进展,并详述了有待解决的关键问题。 |
其他语种文摘
|
Climate change is strongly affected by the concentration of CO_2 in the atmosphere.Weathering of continental lithosphere is an important process controlling the variation of atmospheric CO_2 concentration.By rebuilding the information of paleo-continental weathering profile,we can effectively understand the evolution history of Earth's climate.Traditionally,strontium(Sr)isotopes were used to trace the continental weathering,but there are still some deficiencies in the interpretation of Sr isotope records.For example,the Sr isotope ratios of seawater can be affected by hydrothermal fluids,while the Sr isotope ratios of waters in rivers can be easily affected by different types of weathered rocks.In addition,only the weathering of silicates is considered to control the atmospheric CO_2 sink over the geological time scale,but it is difficult to distinguish Sr isotope records of the carbonate weathering from those of the silicate weathering.Therefore,another suitable tracer of isotope system is required to reconstruct the history of continental weathering.Lithium(Li),a trace element,is mainly concentrated in the silicate minerals of the lithosphere,but very limited in carbonates.Thus,Li isotope system can be a promising tracer for the silicate weathering.Meanwhile,Li isotope ratios are less affected by vital biofractionation effects,and can be recorded well in marine carbonates.These advantages of Li isotope ratios in marine carbonates have provided strong support for tracing the continental weathering history.More importantly,it is necessary to clearly understand the geochemical behaviors of lithium isotopes related to the weathering,transport,and crystallization processes.Therefore,in this paper,we have introduced the Li isotope compositions of different reservoirs,and Li partitioning and isotope fractionation behaviors between various substances and phases,reviewed the recent progresses of lithium isotopes applied for tracing and reconstructing the continental weathering history,and given details of the key problems to be solved in the future. |
来源
|
矿物学报
,2021,41(2):127-138 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2021.41.054
|
关键词
|
锂同位素
;
大陆风化
;
同位素分馏
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州民族大学, 贵州, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6933839
|
参考文献 共
103
共6页
|
1.
Misra S. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering.
Science,2012,335(6070):818-823
|
CSCD被引
40
次
|
|
|
|
2.
Pogge Von Strandmann P A E. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2.
Nature Geoscience,2013,6(8):668-672
|
CSCD被引
19
次
|
|
|
|
3.
Lechler M. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event).
Earth and Planetary Science Letters,2015,432:210-222
|
CSCD被引
11
次
|
|
|
|
4.
Sun H. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary.
Proceedings of the National Academy of Sciences,2018,115(15):3782-3787
|
CSCD被引
24
次
|
|
|
|
5.
Ryu J S. Variation of lithium isotope geochemistry during basalt weathering and secondary mineral transformations in Hawaii.
Geochimica et Cosmochimica Acta,2014,145:103-115
|
CSCD被引
9
次
|
|
|
|
6.
Li G. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks.
Earth and Planetary Science Letters,2014,401:284-293
|
CSCD被引
5
次
|
|
|
|
7.
Wanner C. Seawater δ7Li: A direct proxy for global CO_2 consumption by continental silicate weathering?.
Chemical Geology,2014,381:154-167
|
CSCD被引
10
次
|
|
|
|
8.
Seitz H M. Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs.
Earth and Planetary Science Letters,2007,260:582-596
|
CSCD被引
8
次
|
|
|
|
9.
Day J M D. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon.
Meteoritics & Planetary Science,2016,51(6):1046-1062
|
CSCD被引
1
次
|
|
|
|
10.
Magna T. New constraints on the lithium isotope compositions of the Moon and terrestrial planets.
Earth and Planetary Science Letters,2006,243:336-353
|
CSCD被引
15
次
|
|
|
|
11.
Pogge Von Strandmann P A E. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths.
Geochimica et Cosmochimica Acta,2011,75(18):5247-5268
|
CSCD被引
25
次
|
|
|
|
12.
Jeffcoate A B. Li isotope fractionation in peridotites and mafic melts.
Geochimica et Cosmochimica Acta,2007,71(1):202-218
|
CSCD被引
24
次
|
|
|
|
13.
Seitz H M. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes.
Chemical Geology,2004,212(1):163-177
|
CSCD被引
26
次
|
|
|
|
14.
Magna T. Lithium isotope constraints on crust-mantle interactions and surface processes on Mars.
Geochimica et cosmochimica acta,2015,162:46-65
|
CSCD被引
5
次
|
|
|
|
15.
Seitz H M. Lithium isotope compositions of Martian and lunar reservoirs.
Earth and Planetary Science Letters,2006,245(1):6-18
|
CSCD被引
7
次
|
|
|
|
16.
Teng F Z. Lithium isotopic composition and concentration of the upper continental crust.
Geochimica et Cosmochimica Acta,2004,68(20):4167-4178
|
CSCD被引
56
次
|
|
|
|
17.
Teng F Z. Lithium isotopic composition and concentration of the deep continental crust.
Chemical Geology,2008,255(1):47-59
|
CSCD被引
25
次
|
|
|
|
18.
Kobayashi K. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume.
Chemical Geology,2004,212(1):143-161
|
CSCD被引
21
次
|
|
|
|
19.
Chan L H. Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano.
Geochemistry, Geophysics, Geosystems,2003,4(3)
|
CSCD被引
12
次
|
|
|
|
20.
Vlastelic I. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain.
Earth and Planetary Science Letters,2009,286(3):456-466
|
CSCD被引
12
次
|
|
|
|
|