|
面向云计算的花朵差分授粉工作流多目标优化算法研究
A Multi-objective Workflow Scheduling Algorithm Based on Flower Pollination Cloud Environment
查看参考文献10篇
文摘
|
为解决云计算环境下工作流多目标难于优化的问题,本文提出了一种花朵差分授粉工作流多目标调度优化算法.该算法将工作流中任务和虚拟机建模成花粉,将完整的调度序列建模成花朵.依据任务的偏序关系进行离散花朵授粉过程.仿真结果表明较算法NSGA-II和MEOA/D,该算法能在限定的截止期和预算的条件下具有更高的资源利用率. |
其他语种文摘
|
In order to solve the problem that the multi-objective workflow scheduling is difficult to optimize in the cloud computing environment, this paper proposes a differential flower pollination algorithm for the multi-objective workflow scheduling. The algorithm models the tasks and virtual machines in the workflow into pollen and models the complete scheduling sequence into flowers. Then it adopts a discrete flower pollination process according to the partial order relationship of the task. The simulation results show that compared with the algorithms NSGA-II and MEOA/D, the algorithm can have higher resource utilization under the limited deadline and budget. |
来源
|
电子学报
,2021,49(3):470-476 【核心库】
|
DOI
|
10.12263/dzxb.20191211
|
关键词
|
工作流调度
;
花朵授粉算法
;
多目标优化
;
云计算
|
地址
|
哈尔滨理工大学计算机科学与技术学院, 黑龙江, 哈尔滨, 150080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6933251
|
参考文献 共
10
共1页
|
1.
Choudhary A. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing.
Future Generation Computer Systems,2018,83(6):14-26
|
CSCD被引
4
次
|
|
|
|
2.
Manasrah A M. Workflow scheduling using hybrid GA-PSO algorithm in cloud computing.
Wireless Communications and Mobile Computing,2018,2018(1):1-16
|
CSCD被引
2
次
|
|
|
|
3.
Yao G. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system.
Soft Computing,2017,21(15):4309-4322
|
CSCD被引
3
次
|
|
|
|
4.
罗智勇. 基于虚拟归约工作流三层决策模型的时间-质量优化算法.
电子学报,2019,47(1):245-251
|
CSCD被引
1
次
|
|
|
|
5.
Yuan H.
Biobjective task scheduling for distributed green data centers,2020
|
CSCD被引
1
次
|
|
|
|
6.
Zhang L. Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems.
Information Sciences,2017,379:241-256
|
CSCD被引
9
次
|
|
|
|
7.
Chen Z. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach.
IEEE Transactions on Cybernetics,2018,49(8):2912-2926
|
CSCD被引
12
次
|
|
|
|
8.
Zhou X. Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT.
Future Generation Computer Systems,2019,93(4):278-289
|
CSCD被引
8
次
|
|
|
|
9.
Liu J. A Differential Evolution Flower Pollination Algorithm with Dynamic Switch Probability.
Chinese Journal of Electronics,2019,28(4):737-747
|
CSCD被引
8
次
|
|
|
|
10.
Putra P H. Modified flower pollination algorithm for nonsmooth and multiple fuel options economic dispatch.
2016 8th International Conference on Information Technology and Electrical Engineering,ICITEE 2016.11,2016:1-5
|
CSCD被引
1
次
|
|
|
|
|
|