帮助 关于我们

返回检索结果

基于帧间组稀疏的两阶段递归增强视频压缩感知重构网络
Two-Stage Recursive Enhancement Reconstruction Based on Video Inter-frame Group Sparse Representation in Compressed Video Sensing

查看参考文献24篇

文摘 基于迭代优化的传统视频压缩感知重构算法运行时间长,参数的自适应性较低,限制了其实用性和泛化能力.利用神经网络强大的计算能力和运行速度快、参数可学习的优点,本文首先提出了帧间组稀疏网络(VGSR-Net),用神经网络将图像块组映射到更高维的稀疏表示域中,并利用可学习的阈值提取帧间相关特征.在此基础上,提出了两阶段混合递归增强重构网络(2sRER-VGSR-Net).首先,利用VGSR-Net对初始重构结果进行初步增强;然后,引入STMCNet实现运动估计,并利用残差重构网络进一步重构当前帧丢失的信息,得到更高质量的重构结果.在第二阶段重构过程中采用混合递归结构,充分利用已有的高质量重构帧信息.仿真结果表明,所提算法与现有最优迭代优化重构算法SSIMInterF- GSR相比重构性能提升了1.99dB;和基于深度学习的重构网络CSVideoNet相比,性能提升了4.60dB.
其他语种文摘 The traditional iterative optimized based video compression sensing algorithms are limited by long running time and low adaptability of parameters, resulting in low practicability and generalization. Taking advantage of the powerful computing power, fast speed and learnable parameters of neural networks, this paper first proposes a group sparse representation network (VGSR-Net),which maps the image block group to a higher-dimensional sparse domain through convolution, and uses a learnable threshold to denoise and extract inter-frame correlation. On this basis,a two-stage recursive enhance reconstruction network(2sRER-VGSR-Net) is proposed. First,we perform VGSR-Net to preliminarily enhance the initial reconstruction and then introduce STMC-Net as motion estimation, and the compensated frames are fed into the residual reconstruction network to further extract the missing detail and enhance the current frame. The second stage of reconstruction adopts a hybrid recursive structure with the aim of making full use of the existing better quality reconstructed frames. The simulation results show that the proposed algorithm improves the PSNR(Peak Signal to Noise Ratio) by 1.99dB compared with the existing state-of-art traditional compressed video sensing reconstruction algorithms SSIM-InterF-GSR,while improves the PSNR by 4.60dB with the comparation of the network-based algorithm CSVideoNet.
来源 电子学报 ,2021,49(3):435-442 【核心库】
DOI 10.12263/dzxb.20200272
关键词 视频压缩感知 ; 深度学习 ; 帧间组稀疏表示 ; 混合递归网络 ; 运动估计 ; 增强重构
地址

华南理工大学电子与信息学院, 广东, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 电子技术、通信技术
基金 广东省自然科学基金-重点 ;  广东省自然科学基金
文献收藏号 CSCD:6933247

参考文献 共 24 共2页

1.  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4):1289-1306 CSCD被引 3003    
2.  Gan L. Block compressed sensing of natural images. 15th International Conference on Digital Signal Processing,2007:403-406 CSCD被引 10    
3.  Mun S. Block compressed sensing of images using directional transforms. 16th IEEE International Conference on Image Processing (ICIP),2009:3021-3024 CSCD被引 1    
4.  Chen R. Compressed video sensing with multi-hypothesis prediction. International Conference on Emerging Internetworking,Data & Web Technologies,2017:489-496 CSCD被引 2    
5.  Zhang J. Group-based sparse representation for image restoration. IEEE Transactions on Image Processing,2014,23(8):3336-3351 CSCD被引 90    
6.  Kang L. Distributed compressive video sensing. International Conference on Acoustics,Speech and Signal Processing,2009:1169-1172 CSCD被引 1    
7.  Tramel E W. Video Compressed Sensing with Multihypothesis. Data Compression Conference (DCC),2011:193-202 CSCD被引 1    
8.  Zhao C. Video compressive sensing reconstruction via reweighted residual sparsity. IEEE Transactions on Circuits and Systems for Video Technology,2017,27(6):1182-1195 CSCD被引 18    
9.  和志杰. 视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究. 电子学报,2018,46(3):544-553 CSCD被引 18    
10.  杨春玲. CVS中基于多维度参考帧的双稀疏重构算法. 华南理工大学学报(自然科学版),2018,46(8):1-10 CSCD被引 3    
11.  汤瑞东. 视频压缩感知多假设局部增强重构算法. 自动化学报,2019 CSCD被引 1    
12.  Kulkarni K. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016:449-458 CSCD被引 2    
13.  Shi W. Deep networks for compressed image sensing. IEEE International Conference on Multimedia and Expo (ICME),2017:877-882 CSCD被引 1    
14.  练秋生. 基于多尺度残差网络的压缩感知重构算法. 自动化学报,2019,45(11):2082-2091 CSCD被引 13    
15.  Zhang J. ISTA-Net: Interpretable optimizationinspired deep network for image compressive sensing. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:1828-1837 CSCD被引 2    
16.  Xu K. CSVideoNet: A real-time end-to-end learning framework for high-frame-rate video compressive sensing. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV),2018:1680-1688 CSCD被引 2    
17.  Sajjadi M S M. Frame-recurrent video super-resolution. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2018:6626-6634 CSCD被引 1    
18.  Gu D. Continuous bidirectional optical flow for video frame sequence interpolation. 2019 IEEE International Conference on Multimedia and Expo (ICME),2019:1768-1773 CSCD被引 1    
19.  Kim T H. Spatiotemporal transformer network for video restoration. The European Conference on Computer Vision (ECCV),2018:106-122 CSCD被引 1    
20.  Yang R. Multi-frame quality enhancement for compressed video. Conference on Computer Vision and Pattern Recognition (CVPR),2018:6664-6673 CSCD被引 1    
引证文献 4

1 杨春玲 深层特征域运动估计和多层多假设运动补偿的视频压缩编解码网络 华南理工大学学报. 自然科学版,2022,50(10):51-61
CSCD被引 0 次

2 魏志超 时域注意力特征对齐的视频压缩感知重构网络 电子学报,2022,50(11):2584-2592
CSCD被引 3

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号