具有层片状α相组织的TB8钛合金热变形行为及本构方程
Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure ofαphase
查看参考文献21篇
文摘
|
主要研究具有层片状α相组织的TB8钛合金在α+β双相区的热变形行为。结果表明,在应变速率为1 s~(-1)时,变形温度为650℃的流变曲线展现出连续的流变软化,当温度高于650℃时,流变曲线呈现出不连续屈服现象。不连续屈服现象随变形温度的增加和应变速率的降低而消失。当应变速率为0.001 s~(-1)时,750℃和800℃的流变曲线呈现出典型的动态再结晶特征。峰值应力σ_p,温度T和应变速率ε·三者之间的关系已通过Arrhenius-type本构方程进行表征,建立了材料常数α,A,n和Q值与真应变之间的关系模型,并分析了应变对α,A,n和Q值的影响。α值随真应变的增加而增加,而A,n和Q的值随真应变的增加而逐渐降低。实验应力值和预测应力值之间的相关系数和平均相对误差参数分别为0.945和9.08%。这表明本工作建立的应变补偿的热变形本构方程能够很好地预测具有层片状α相组织的TB8钛合金在α+β双相区热变形过程中的流变应力。 |
其他语种文摘
|
The hot deformation behavior of TB8 titanium alloy with a lamellarαstructure in theα+β dulex phase region was investigated.The results show that at the strain rate of 1 s~(-1),a continuous flow softening phenomenon is observed in the curve of the samples deformed at 650 ℃,while a discontinuous yield phenomenon is visual in the curve of the samples when the deformation temperature is higher than 650℃.The discontinuous yield phenomenon is gradually disappeared with increasing deformation temperature and strain rate.When the strain rate is 0.001 s~(-1) and the deformation temperature is 750℃as well as 800℃,typical characteristics of dynamic recrystallization is presented in the curve of the samples.The relationship among peak stressσ_ptemperature T and strain rateε· and is characterized by Arrhenius-type constitutive equation.The equation between the material constants (α,Q,nand lnA)and strain is constructed.The effect of strain on the material constants(α,Q,n and lnA)of the Arrhenius-type constitutive equation is analyzed.The value ofαis increased with true strain,while the values of Q,nand lnAare gradually decreased.The correlation coefficient(R~2)and the AARE value between the experimental and the predicted stress are 0.945 and 9.08%,respectively.This indicates that the strain-compensates Arrhenius type constitutive equation can better predict the flow stress value under different deformation conditions for the TB8 titanium alloy with a lamellarαstructure deformed in theα+βdulex phase region. |
来源
|
材料工程
,2021,49(1):75-81 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000307
|
关键词
|
TB8钛合金
;
热变形
;
流变行为
;
本构方程
|
地址
|
1.
贵州大学材料与冶金学院, 贵阳, 550025
2.
贵州大学, 贵州省材料结构与强度重点实验室, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金资助项目
;
贵州省联合基金
;
贵州省基础研究计划项目
;
贵州省教育厅青年人才成长项目
;
贵州大学大学生创新创业训练计划资助项目
|
文献收藏号
|
CSCD:6904274
|
参考文献 共
21
共2页
|
1.
Lin Y C. Effects of solution temperature and cooling rate on microstructure and micro-hardness of a hot compressed Ti-6Al-4Valloy.
Vacuum,2019,159:191-199
|
CSCD被引
5
次
|
|
|
|
2.
Ai Y. Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach.
International Journal of Fatigue,2019,127:110-119
|
CSCD被引
3
次
|
|
|
|
3.
Wu Y. Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression.
Journal of Alloys and Compounds,2018,749:844-852
|
CSCD被引
10
次
|
|
|
|
4.
Ghasemi E. Flow softening and dynamic recrystallization behavior of BT9titanium alloy:a study using process map development.
Journal of Alloys and Compounds,2017,695:1706-1718
|
CSCD被引
17
次
|
|
|
|
5.
Gao Y. Microstructure evolution and hot deformation behavior of Ti-6.5Al-2Zr-1Mo-1Valloy with starting lamellar structure.
Journal of Alloys and Compounds,2019,809:151852
|
CSCD被引
5
次
|
|
|
|
6.
Lin Y C. Hot compressive deformation behavior and microstructure evolution of a Ti-55511alloy with basket-weave microstructures.
Vacuum,2019,169:108878
|
CSCD被引
8
次
|
|
|
|
7.
Duan Y P. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process.
Transactions of Nonferrous Metals Society of China,2007,17:1199-1204
|
CSCD被引
20
次
|
|
|
|
8.
Tang B. Hot deformation behavior of TB8alloy near theβ-Transus.
Rare Metal Materials and Engineering,2013,42(9):1761-1766
|
CSCD被引
5
次
|
|
|
|
9.
Yang Q Y. Initialβgrain size effect on high-temperature flow behavior of TB8titanium alloys in singleβphase field.
Metals,2019,9(8):890-909
|
CSCD被引
1
次
|
|
|
|
10.
Zhao Y L. The high temperature deformation behavior and microstructure of TC21titanium alloy.
Materials Science and Engineering:A,2010,527:5360-5367
|
CSCD被引
20
次
|
|
|
|
11.
Ma X. Modeling constitutive relationship of Ti17titanium alloy with lamellar starting microstructure.
Materials Science and Engineering:A,2012,538:182-189
|
CSCD被引
18
次
|
|
|
|
12.
Tan Y B. A study on the hot deformation behavior of 47Zr-45Ti-5Al-3Valloy with initial lamellarαstructure.
Metallurgical and Materials Transactions A,2016,47(12):5974-5984
|
CSCD被引
2
次
|
|
|
|
13.
赖运金. Ti-17合金高温变形中的不连续屈服与流变软化研究.
机械科学与技术,2007(9):1183-1186
|
CSCD被引
7
次
|
|
|
|
14.
Philippart I. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al.
Materials Science and Engineering:A,1998,243:196-200
|
CSCD被引
42
次
|
|
|
|
15.
Zhou W. Discontinuous yielding in high temperature deformation of Ti-5553alloy.
Rare Metal Materials and Engineering,2015,44(10):2415-2418
|
CSCD被引
3
次
|
|
|
|
16.
Ankem S. The effect of volume percent of phase on the high temperature tensile deformation of two-phase Ti-Mn alloys.
Materials Science and Engineering:A,1989,111:51-61
|
CSCD被引
13
次
|
|
|
|
17.
Tan Y B. Effect of hot deformation on α→β phase transformation in 47Zr-45Ti-5Al-3V alloy.
Transactions of Nonferrous Metals Society of China,2018,28:1947-1957
|
CSCD被引
1
次
|
|
|
|
18.
钱匡武. 金属动态应变时效现象中的"锯齿屈服".
福建工程学院学报,2003,1(1):4-8
|
CSCD被引
8
次
|
|
|
|
19.
Radovic N. Effect of interpass time and cooling rate on apparent activation energy for hot working and critical recrystallization temperature of Nb-microalloyed steel.
ISIJ International,1999,39(6):575-582
|
CSCD被引
6
次
|
|
|
|
20.
Abbasi-Bani A. A comparative study on the capability of Johnson-Cook and Arrhenius-type constitutive equations to describe the flow behaviour of Mg-6Al-1Zn alloy.
Mechanics of Materials,2014,71:52-61
|
CSCD被引
23
次
|
|
|
|
|