自修复聚合物在电化学储能领域的研究进展
Research progress of self-repairing polymers in electrochemical energy storage devices
查看参考文献55篇
文摘
|
自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。 |
其他语种文摘
|
Self-healing polymer materials are able to self-repair damage and recover themselves after cracks generating to maintain their structural and functional integrity.According to whether additional repair agent is added,self-healing polymers are mainly divided into two categories,namely extrinsic-and intrinsic-based polymers.The key materials of electrochemical energy storage devices will experience irreversible mechanical damage in extreme condition applications,for example,the energy storage device more prone to physical damage inwearable devices during the multiple bending and deformation processes.These problems severely reduce the stability of energy storage and delivery,and shorten the life of the devices.Therefore,the application of self-healing polymers in electrochemical energy storage devices to improve the stability and life of devices has become one of the research hotspots in recent years.Herein,this article summarizes the repair mechanism of selfhealing polymer materials(capsule-based,vascular-based,and intrinsic polymers),with main focus on intrinsic self-healing polymer and its research progress in the field of electrochemical energy storage,which based on molecular interactions to achieve multi-time reversible healing without any additional repair agent.The self-healing electrode and electrolyte system were reviewed respectively,and then the self-healing mechanism and its influence on the electrochemical performance of energy storage devices were described.The research progress of self-healing functional polymer as high specific energy electrode binder,interface modification layer and self-healing electrolyte were summarized in detail.Finally,the future perspectives regarding the future development of self-healing polymer materials were also discussed. |
来源
|
材料工程
,2021,49(1):1-10 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000194
|
关键词
|
自修复聚合物
;
电化学储能
;
电极
;
电解质
;
界面
|
地址
|
1.
天津大学化工学院, 天津, 300350
2.
中国电子科技集团公司第十八研究所, 中国电子科技集团公司化学与物理电源重点实验室, 天津, 300384
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;电工技术;化学工业 |
文献收藏号
|
CSCD:6904267
|
参考文献 共
55
共3页
|
1.
Goodenough J B. Challenges for rechargeable Li batteries.
Chem Mater,2010,22(3):587-603
|
CSCD被引
609
次
|
|
|
|
2.
Harry K J. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.
Nature Materials,2013,13(1):69-73
|
CSCD被引
48
次
|
|
|
|
3.
Cheng Y T. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles.
Appl Phys,2008,104(8):083521-083526
|
CSCD被引
10
次
|
|
|
|
4.
Diegelmann R F. Wound healing:an overview of acute,fibrotic and delayed healing.
Front Bio,2003,9(71):283-289
|
CSCD被引
1
次
|
|
|
|
5.
Shchukin D G. Layer-by-layer assembled nanocontainers for self-healing corrosion protection.
Advanced Materials,2006,18(13):1672-1678
|
CSCD被引
31
次
|
|
|
|
6.
Li Y. Bioinspired self-healing superhydrophobic coatings.
Angewandte Chemie,2010,49(35):6129-6133
|
CSCD被引
36
次
|
|
|
|
7.
Wang X. Optically transparent antibacterial films capable of healing multiple scratches.
Advanced Functional Materials,2014,24(3):403-411
|
CSCD被引
4
次
|
|
|
|
8.
Wang J. Bioinspired omniphobiccoatings with a thermal self-pepairfunction on industrial materials.
ACS Applied Materials &Interfaces,2016,8(12):8265-8271
|
CSCD被引
8
次
|
|
|
|
9.
Li Y. Highly transparent,nanofiller-reinforced scratch-resistant polymeric composite films capable of healing scratches.
ACS Nano,2015,9(10):10055-10065
|
CSCD被引
5
次
|
|
|
|
10.
Lei W. Dynamic spongy films to immobilize hydrophobic antimicrobial peptides for self-healing bactericidal coating.
Journal of Materials Chemistry B,2016,4(38):6358-6365
|
CSCD被引
1
次
|
|
|
|
11.
Chen D. Layer-by-layer-assembled healable antifouling films.
Advanced Materials,2015,27(39):5882-5888
|
CSCD被引
5
次
|
|
|
|
12.
Oh J Y. Intrinsically stretchable and healable semiconducting polymer for organic transistors.
Nature,2016,539(7629):411-415
|
CSCD被引
61
次
|
|
|
|
13.
马埸浩. 微脉管型自修复复合材料研究进展.
高分子材料科学与工程,2018,34(1):166-172
|
CSCD被引
7
次
|
|
|
|
14.
Huynh T P. Advanced materials for use in soft self-healing devices.
Adv Mater,2017,29(19):1604973
|
CSCD被引
14
次
|
|
|
|
15.
White S R. Autonomic healing of polymer composites.
Nature,2001,409(6822):794-797
|
CSCD被引
336
次
|
|
|
|
16.
羊海棠. clkxjsxb-e200905.
材料科学与工程学报,2009,27(5):798-803
|
CSCD被引
5
次
|
|
|
|
17.
Gumula T. Regeneration efficiency of composites containing two-sized capillaries.
Polym Composite,2016,37(4):1223-1230
|
CSCD被引
1
次
|
|
|
|
18.
Kuhl N. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers.
Advanced Functional Materials,2015,25(22):3295-3301
|
CSCD被引
10
次
|
|
|
|
19.
Canadell J. Self-healing materials based on disulfide links.
Macromolecules,2011,44(8):2536-2541
|
CSCD被引
58
次
|
|
|
|
20.
Yu K. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers.
RSC Advances,2014,4(89):48682-48690
|
CSCD被引
9
次
|
|
|
|
|