微牛级射频离子推力器结构优化研究
Structure Optimization of Micro-Newton Class Radio-Frequency Ion Thruster
查看参考文献24篇
文摘
|
为了满足中国科学院空间引力波探测--“空间太极计划”对航天器推进系统提出的微牛量级推力高精度控制需求,基于感性耦合等离子体自持放电,设计了一套微牛级射频离子推力器(μRIT-1)。通过理论分析与实验验证,完成了μRIT-1关键结构组件优化工作,包括射频天线、放电室及离子光学系统。根据实验结果,μRIT-1采用7匝线直径为1.6mm的紫铜管作为射频天线,匝间距为2.0mm;放电室材料为氧化铝陶瓷,内径为1.0cm,长径比为1.5;离子光学系统采用双栅极结构,材料为金属钼,栅极透明度为18.05%。经过结构优化,μRIT-1可以实现5~100μN可调推力输出,比冲可达1275s。 |
其他语种文摘
|
In order to meet the micro-newton level thrust high-precision control requirements of spacecraft propulsion system,which was proposed by the space gravitational wave detection program of the Chinese Academy of Sciences called“Space Taiji Project”,a micro-newton level radio-frequency ion thruster(μRIT-1)was designed that was based on the inductively coupled plasma self-sustaining discharge. Through the theoretical analysis and the experimental verification,the optimization of key components of the μRIT-1 was completed,including RF antenna,discharge chamber and ion optical system. According to the experimental results of the μRIT-1,the RF antenna was 7 turns and 2.0mm pitch with 1.6mm diameter copper tube. The material of discharge chamber was alumina ceramic,the inner diameter was 1.0cm and the length to diameter ratio was 1.5. The ion optics system was two grids structure with molybdenum,and the gird transparency was 18.05%. After structural optimization,the thrust range of the μRIT-1 was 5~100μN,and the maximum specific impulse was 1275s. |
来源
|
推进技术
,2021,42(2):474-480 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.190828
|
关键词
|
空间引力波探测
;
电推进
;
射频离子推力器
;
结构优化
;
微牛级
|
地址
|
1.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航天(宇宙航行) |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6904266
|
参考文献 共
24
共2页
|
1.
Abbott B P. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO.
Astrophysical Journal,2017,839(12)
|
CSCD被引
1
次
|
|
|
|
2.
Karsten D.
A Proposal in Response to the ESA Call for L3 Mission Concepts,2017
|
CSCD被引
1
次
|
|
|
|
3.
European Space Agency.
NGO Revealing a Hidden Universe:Opening a New Chapter of Discovery,2011
|
CSCD被引
1
次
|
|
|
|
4.
European Space Agency.
The ESA-L3 Gravitational Wave Mission,2016
|
CSCD被引
1
次
|
|
|
|
5.
Wu Y L.
Taiji Program in Space and Unified Field Theory in Hyper-Spacetime,2017
|
CSCD被引
1
次
|
|
|
|
6.
Collingwood C.
Investigation of a Miniature Differential Ion Thruster,2011
|
CSCD被引
3
次
|
|
|
|
7.
贺建武.
射频离子微推力器工作机理及性能优化研究,2017
|
CSCD被引
3
次
|
|
|
|
8.
曾明.
微牛级会切场等离子体推力器设计及实验研究,2018
|
CSCD被引
1
次
|
|
|
|
9.
Loeb H W. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development.
29th International Electric Propulsion Conference,2005
|
CSCD被引
1
次
|
|
|
|
10.
Altmann C. The RIT-μX Miniaturized Ion Engine System Way to TRL5 for an Extended Thrust Range.
34th International Electric Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
11.
Hruby P. Overview of Busek Electric Propulsion.
36th International Electric Propulsion Conference,2019
|
CSCD被引
1
次
|
|
|
|
12.
Tsay M. Micro Radio-Frequency Ion Propulsion System.
48th Joint Propulsion Conference,2012
|
CSCD被引
1
次
|
|
|
|
13.
Trudel T A. Design and Performance Testing of a 1-cm Miniature Radio-Frequency Ion Thruster.
Ann Arbor:31st International Electric Propulsion Conference,2009
|
CSCD被引
1
次
|
|
|
|
14.
Watanabe H. Experimental Investigation of Inductively Coupled Plasma Cathode for the Application to Ion Thrusters.
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2013
|
CSCD被引
1
次
|
|
|
|
15.
Hiramoto K. Investigation of Ion Beam Extraction Mechanism for Higher Thrust Density of Ion Thrusters.
Transactions of the Japan Society for Aeronautical & Space Sciences Aerospace Technology Japan,2016,14(30):57-62
|
CSCD被引
1
次
|
|
|
|
16.
Antropov N N. Experimental Research of Radio-Frequency Ion Thruster.
Thermal Engineering,2016,63(13):957-963
|
CSCD被引
4
次
|
|
|
|
17.
Ito S. Performance of RF Plasma Thruster for Various Magnetic Field Configurations by Permanent Magnets.
Joint Conference of 30th International Symposium on Space Technology and Science,2015
|
CSCD被引
1
次
|
|
|
|
18.
吴辰宸. 射频离子推力器放电与引出特性调节规律仿真与试验研究.
推进技术,2019,40(1):232-240
|
CSCD被引
6
次
|
|
|
|
19.
蔡建. 碘工质射频离子微推进技术研究.
长沙:第14届中国电推进技术学术研讨会,2018
|
CSCD被引
1
次
|
|
|
|
20.
Chabert P.
Physics of Radio-Frequency Plasmas,2011
|
CSCD被引
37
次
|
|
|
|
|