CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展
Research progress in nano-meso scale modelling of carbon nanotube reinforced FRP composites
查看参考文献67篇
文摘
|
CNTs的高刚度、高强度使得其成为复合材料领域极有前景的纳米增强体之一。然而,单纯依靠实验获得CNTs对复合材料力学性能影响规律的方法是不可行的,需要辅之以合适有效的数值模拟方法去解理和分析CNTs各个因素对于复合材料力学性能的影响机制和规律。本文首先依据实验中真实存在的CNTs形态确定了模型为纳米-介观尺度模型,然后基于建模方式和研究对象的差异综述了三种常见的纳米-介观尺度模型数值模拟方法,最后根据目前的数值模拟结果,从CNTs本征性能,CNTs的含量和分布两大方面综述了CNTs对复合材料力学性能的影响机制,为数值模拟研究提供了可靠支撑,同时也为实验性研究提供了有力的理论依据。此外,由于数值模拟方法和CNTs变量的多样性,CNTs-纤维增强树脂基复合材料的数值模拟仍存在着巨大的研究潜力。 |
其他语种文摘
|
As one of the most promising nanofiller,carbon nanotube has attracted more and more attention due to its extraordinary stiffness and strength.While it is not feasible to obtain the effects of carbon nanotubes on the mechanical properties of composites by solely relying on experimental methods,cleaving and analysing the influence of various parameters of carbon nanotubes on the mechanical properties of composites through numerical simulation methods has become a tendency. Based on the morphology of carbon nanotubes,the nano-meso scale model was proposed.Then three numerical simulation methods were classified depending on the differences between the way of modelling and the objects of discussing.In the end,the influencing law of carbon nanotubes on the mechanical properties of composites was reviewed from two aspects(intrinsic properties of carbon nanotubes,content and distribution of carbon nanotubes),which is expected to provide support to the credibility of results from numerical simulation method.In addition,due to the variety of numerical simulation methods and the diversity of carbon nanotube variables,the numerical simulation research of carbon nanotubes reinforced FRP composites still has great potential. |
来源
|
材料工程
,2020,48(12):1-11 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000154
|
关键词
|
CNTs
;
纳米复合材料
;
纳米-介观尺度
;
数值模拟方法
|
地址
|
1.
国防科技大学空天科学学院, 长沙, 410073
2.
中山大学材料学院, 广州, 510006
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:6895602
|
参考文献 共
67
共4页
|
1.
Pal G. Modeling of carbon nanotubes and carbon nanotube-polymer composites.
Progress in Aerospace Sciences,2016,80:33-58
|
CSCD被引
6
次
|
|
|
|
2.
Ma P C. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review.
Composites:Part A,2010,41(10):1345-1367
|
CSCD被引
73
次
|
|
|
|
3.
Gojny F H. Carbon nanotube-reinforced epoxy-composites:enhanced stiffness and fracture toughness at low nanotube content.
Composites Science & Technology,2004,64(15):2363-2371
|
CSCD被引
32
次
|
|
|
|
4.
Bekyarova E. Multiscale carbon nanotube?carbon fiber reinforcement for advanced epoxy composites.
Langmuir:the ACS Journal of Surfaces and Colloids,2007,23(7):3970-3974
|
CSCD被引
2
次
|
|
|
|
5.
Wicks S S. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes.
Composites Science and Technology,2010,70:20-28
|
CSCD被引
17
次
|
|
|
|
6.
He X. Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multiwalled carbon nanotubes onto the fibers.
Carbon,2007,45(13):2559-2563
|
CSCD被引
21
次
|
|
|
|
7.
Garcia E J. Joining prepreg composite interfaces with aligned carbon nanotubes.
Composites: Part A,2008,39(6):1065-1070
|
CSCD被引
12
次
|
|
|
|
8.
Khan S U. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers.
Carbon,2012,50(14):5265-5277
|
CSCD被引
11
次
|
|
|
|
9.
Shim B S. Multiparameter structural optimization of single-walled carbon nanotube composites:toward record strength,stiffness,and toughness.
ACS Nano,2009,3(7):1711-1722
|
CSCD被引
6
次
|
|
|
|
10.
Gojny F H. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites.
Polymer,2006,47(6):2036-2045
|
CSCD被引
37
次
|
|
|
|
11.
Gojny F H. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study.
Composites Science & Technology,2005,65(15/16):2300-2313
|
CSCD被引
19
次
|
|
|
|
12.
Park J J. Functionalization of multi-walled carbon nanotubes by free radical graft polymerization initiated from photoinduced surface groups.
Carbon,2010,48(10):2899-2905
|
CSCD被引
5
次
|
|
|
|
13.
Moradidastjerdi R. The effects of carbon nanotube orientation and aggregation on static behavior of functionally graded nanocomposite cylinders.
Journal of Solid Mechanics,2017,9(1):198-212
|
CSCD被引
1
次
|
|
|
|
14.
Liu Q. The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dualscale simulations.
Carbon,2018,142:141-149
|
CSCD被引
2
次
|
|
|
|
15.
Wagner H D. Nanocomposite toughness from a pull-out mechanism.
Composites Science & Technology,2013,83:27-31
|
CSCD被引
2
次
|
|
|
|
16.
Nadiv R. Performance of nano-carbon loaded polymer composites:dimensionality matters.
Carbon,2018,126:410-418
|
CSCD被引
4
次
|
|
|
|
17.
Needleman A. Effect of an interphase region on debonding of a CNT reinforced polymer composite.
Composites Science & Technology,2010,70(15):2207-2215
|
CSCD被引
4
次
|
|
|
|
18.
Romanov V S. Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes.
Carbon,2015,82:184-194
|
CSCD被引
3
次
|
|
|
|
19.
Greef N D. Damage development in woven carbon fiber/epoxy composites modified with carbon nanotubes under tension in the bias direction.
Composites: Part A,2011,42(11):1635-1644
|
CSCD被引
1
次
|
|
|
|
20.
Zhou H. Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotubeshort carbon fiber interleaves.
Composites Science & Technology,2017,140:46-53
|
CSCD被引
8
次
|
|
|
|
|