帮助 关于我们

返回检索结果

基于VMD的中国出口集装箱运价指数分析与组合预测
Analysis and combined forecasting of China containerized freight index based on VMD

查看参考文献37篇

汤霞 1,2,3   匡海波 1 *   郭媛媛 1   刁姝杰 1,2   张鹏飞 1,2  
文摘 基于分解-重构-分项预测-集成思想,通过优选分解方法、优化重构方法、优选预测方法及合理选择集成方法等途径,构建了基于变分模态分解(VMD)的组合预测模型,对中国出口集装箱运价指数(CCFI)进行了预测,分析了CCFI波动特性及经济内涵.首先,选用VMD将运价指数序列分解为多个模态分量;其次,采用C值优化的FCM算法将模态分量重构为高、中、低频和趋势项,通过波动特性分析挖掘了重构项蕴含的短期市场不均衡因素、季节因素、重大事件及市场供需等经济内涵;再次,构建了基于数据特征分析的预测模型优选方法,进行了重构项预测;最后,将重构项预测值相加集成,分析了预测效果.实证结果表明,构建的组合模型预测效果优于BPNN、SVM、ARIMA等单一模型、EMD组合模型及未优化的VMD组合模型,较好地体现了CCFI外在波动特征与内在经济意义.
其他语种文摘 Following the idea of decomposition-reconstruction-subsequence forecasting-ensemble, a combined forecasting model based on variational mode decomposition (VMD) was proposed. The model was constructed by selecting suitable decomposition model, optimizing reconstruction method, choosing appropriate subsequence forecasting method and ensemble method. And it was used to forecast the China containerized freight index (CCFI) and analyze the volatility characteristics and economic connotations of CCFI. Firstly, The time series CCFI was decomposed into multiple modal components by using VMD. Secondly, The modal components were reconstructed into high frequency, medium frequency, low frequency and trend subsequences, which means short-term market imbalance factors, seasonal factors, major events and market supply and demand respectively. Here, the fuzzy C-clustering algorithm was used to reconstruct the modal components, and its parameter C was optimized by component time-scale analysis. The economic meaning of each subsequence was explored by analyzing its volatility characteristics. Thirdly, a method based on data feature analysis was proposed to select the proper forecasting models, and it was used for reconstruct subsequences forecast. Finally, forecast results of reconstructed subsequences were added to obtain final output, and the ensemble forecast output was compared with other models' forecast results. The empirical results showed that the combined forecast model proposed in this paper is superior to the single model, such as BPNN, SVM, ARIMA, and EMD combination model, as well as other multiscale combined forecast models based on VMD. And the analysis results reflected the external fluctuation characteristics and intrinsic economic meaning of CCFI.
来源 系统工程理论与实践 ,2021,41(1):176-187 【核心库】
DOI 10.12011/setp2019-0226
关键词 集装箱运价 ; 预测 ; 变分模态分解 ; 数据特征分析 ; 模糊聚类 ; 支持向量机 ; 神经网络
地址

1. 大连海事大学, 综合交通运输协同创新中心, 大连, 116026  

2. 大连海事大学交通运输工程学院, 大连, 116026  

3. 珠海城市职业技术学院经济管理学院, 珠海, 519000

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 社会科学总论
基金 国家自然科学基金重点项目 ;  国家自然科学基金 ;  国家教育部长江学者与创新团队发展计划 ;  广东省教育厅项目
文献收藏号 CSCD:6890848

参考文献 共 37 共2页

1.  Unctad. Review of maritime transport 2017,2018 CSCD被引 1    
2.  Nielsen P. An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry. Maritime Policy & Management,2014,41(7SI):667-682 CSCD被引 1    
3.  Munim Z H. Forecasting container shipping freight rates for the Far East-Northern Europe trade lane. Maritime Economics & Logistics,2017,19(1):106-125 CSCD被引 4    
4.  Beenstock M. Econometric modelling of world shipping,1993 CSCD被引 1    
5.  Stopford M. Maritime economics,2009 CSCD被引 4    
6.  Kavussanos M G. Price risk modelling of different size vessels in the tanker industry using autoregressive conditional heterskedastic (ARCH) models. Transportation Research Part E: Logistics and Transportation Review,1996,32(2):161-176 CSCD被引 1    
7.  Kavussanos M G. Over-the-counter forward contracts and spot price volatility in shipping. Transportation Research Part E: Logistics and Transportation Review,2004,40(4):273-296 CSCD被引 5    
8.  Luo M. An econometric analysis for container shipping market. Maritime Policy & Management,2009,36(6):507-523 CSCD被引 4    
9.  Duru O. Bivariate long term fuzzy time series forecasting of dry cargo freight rates. The Asian Journal of Shipping and Logistics,2010,26(2):205-223 CSCD被引 1    
10.  Uyar K. Long term dry cargo freight rates forecasting by using recurrent fuzzy neural networks. Procedia Computer Science,2016,102:642-647 CSCD被引 2    
11.  Adland R. The non-linear dynamics of spot freight rates in tanker markets. Transportation Research Part E: Logistics and Transportation Review,2006,42(3):211-224 CSCD被引 8    
12.  Chou M. Fuzzy time series theory application for the China containerized freight index. Applied Economics and Finance,2016,3(3):127-135 CSCD被引 3    
13.  刘娜. 基于RBF神经网络的中国出口集装箱运价指数预测研究(英文). 第六届交通运输领域国际学术会议论文集(下卷),2006:301-307 CSCD被引 1    
14.  梁玮. 基于神经网络的出口集装箱运价指数估计模型. 计算机仿真,2013(8):421-425 CSCD被引 4    
15.  李宗龙. 基于GRNN的中国出口集装箱运价指数预测. 中国商贸,2013(21):147-149 CSCD被引 2    
16.  计明军. 基于组合模型的油轮运价指数分析与预测. 交通运输系统工程与信息,2012(1):199-204 CSCD被引 1    
17.  杨忠振. 基于支持向量机的巴拿马型船舶运价指数预测方法. 交通运输系统工程与信息,2011(3):50-57 CSCD被引 2    
18.  单福生. 基于小波分析和ARIMA模型的中国出口集装箱运价指数预测,2013 CSCD被引 3    
19.  Zeng Q. A new approach for Baltic Dry Index forecasting based on empirical mode decomposition and neural networks. Maritime Economics & Logistics,2016,18(2):192-210 CSCD被引 3    
20.  王书平. 基于多尺度分析的小麦价格预测研究. 中国管理科学,2016(5):85-91 CSCD被引 14    
引证文献 7

1 秦海峰 基于变分模态分解的非稳态备件需求预测方法 火力与指挥控制,2021,46(11):99-105
CSCD被引 0 次

2 肖进 基于选择性深度集成的集装箱吞吐量混合预测模型研究 系统工程理论与实践,2022,42(4):1107-1128
CSCD被引 2

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号