高光谱遥感高速成像电路电磁兼容设计
Electromagnetic compatibility design of hyperspectral remote sensing high-speed imaging circuit
查看参考文献26篇
文摘
|
在高光谱遥感成像领域,成像载荷在高空间分辨率、高光谱分辨率及大幅宽等指标方面需求不断提升,为解决星载高光谱成像高速电子学愈演愈烈的电磁干扰(electromagnetic interference,EMI)问题,提出了增强星载高光谱成像仪电磁兼容(electromagnetic compatibility,EMC)能力的针对性设计方法,并通过在某系列高分辨率高光谱成像仪载荷上的具体实施,验证了EMC针对性设计的有效性。为寻求高光谱成像仪EMI设计的理论方法及技术实现手段进行了有益探索,为其他遥感用星载高速成像载荷设计提供了有益借鉴。 |
其他语种文摘
|
In the field of hyperspectral remote sensing imaging,the demand of indicators for hyperspectral remote resolution,hyperspectral resolution and large width of imaging loads are improved.To solve the problem that the electromagnetic interference(EMI)of the high-speed electronics of spaceborne hyperspectral imaging is becoming more and more intensive,the target design method to enhance the electromagnetic compatibility(EMC)capability of the spaceborne hyperspectral imager is proposed,and the implementation of the load on a specific series of high resolution hyperspectral imager verified the effectiveness of the targeted design.In order to seek the theoretical methods and technical implementation methods of EMI design for high-speed hyperspectral imagers,the useful explorations is made to provide a useful reference for the design of other spaceborne high-speed imaging loads for remote sensing. |
来源
|
系统工程与电子技术
,2021,43(1):26-32 【核心库】
|
DOI
|
10.3969/j.issn.1001-506x.2021.01.04
|
关键词
|
电磁兼容
;
电磁兼容设计
;
高光谱成像仪
;
高速成像电路
|
地址
|
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-506X |
学科
|
自动化技术、计算机技术 |
文献收藏号
|
CSCD:6888543
|
参考文献 共
26
共2页
|
1.
肖文光. 某星载波控单机电磁兼容性设计.
空军预警学院学报,2017,31(3):171-174
|
CSCD被引
1
次
|
|
|
|
2.
Wu P. The experiment study of effects on ADC chip against radiation and electromagnetic environment.
Proc.of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits,2019:207-209
|
CSCD被引
1
次
|
|
|
|
3.
Wei L. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment.
IEEE Trans.on Electromagnetic Compatibility,2018,60(2):520-528
|
CSCD被引
24
次
|
|
|
|
4.
Gaynutdinovr R. Virtual testing of electronic systems by electromagnetic compatibility requirements.
Proc.of the XIV International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering,2018:320-323
|
CSCD被引
1
次
|
|
|
|
5.
Dobusc H J. Implementation of current based three-phase CM/DM noises eparation on the driveside.
Proc.of the International Symposium on Electromagnetic Compatibility,2018:220-225
|
CSCD被引
1
次
|
|
|
|
6.
Powell T. Predictive model for extreme electromagnetic compatibility on CMOS inverters.
Proc.of the International Symposium on Electromagnetic Compatibility,2018:113-116
|
CSCD被引
1
次
|
|
|
|
7.
刘永征. 基于ADDI7004的星载高光谱成像仪图像处理系统设计实现.
电子器件,2019,42(6):1455-1457
|
CSCD被引
1
次
|
|
|
|
8.
Chatzineofytou E G. Decoupling of ground plane effect on low frequency magnetic and electric field measurements & modeling.
Proc.of the ESAW Orkshopon Aerospace EMC,2019
|
CSCD被引
1
次
|
|
|
|
9.
Oussamagass A B. Characterization of electromagnetic wave coupling with at wisted bundle of twisted wirepairs(TBTWPs)above aground plane.
IEEE Trans.on Electromagnetic Compatibility,2019,61(1):251-260
|
CSCD被引
1
次
|
|
|
|
10.
Lang E C. Experimental validation of abroad band circuit model for electromagnetic-interference analysis in metal licen closures.
Proc.of the IEEE Symposiumon Electromagnetic Compatibility,Signal Integrity and Power Integrity,2018:571-576
|
CSCD被引
1
次
|
|
|
|
11.
Xiong W T. Analysis of electromagnetic shielding of IC package with thin absorbing material coating inside in two different configurations.
Proc.of the IEEE International Symposiumon Electromagnetic Compatibility and IEEE Asia-Pacific Symposiumon Electromagnetic Compatibility,2018:1216-1221
|
CSCD被引
1
次
|
|
|
|
12.
Yang B. Precision all-opticalemc test technique of integrated circuits.
Proc.of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits,2019:243-245
|
CSCD被引
1
次
|
|
|
|
13.
Ramiro A. Near field scanner for electromagnetic pre-compatibility tests.
Proc.of the Argentine Conference on Automatic Control,2018
|
CSCD被引
1
次
|
|
|
|
14.
Ma J Y. Analysis of magneticfilm-type noise suppressor integratedon transmission lines for on-chip cross talk evaluation.
IEEE Trans.on Magnetics,2018,54(6):2800404
|
CSCD被引
1
次
|
|
|
|
15.
Kobayashi R. Simultaneous and non-invasive probe for measuring common-mode voltage and current.
Proc.of the Joint International Symposiumon Electromagnetic Compatibility,Sapporo and Asia-Pacific International Symposiumon Electromagnetic Compatibility,2019:645-648
|
CSCD被引
1
次
|
|
|
|
16.
Harbertsd W. If scattering of a cylindrical shield in an alternating magnetic field.
Proc. of the International Symposiumon Electromagnetic Compatibility-EMC EUROPE,2019:701-706
|
CSCD被引
1
次
|
|
|
|
17.
Chu N. A high-precision thermal imaging approach based on Bayesian inference for EMC diagnosis.
Proc.of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits,2019:299-303
|
CSCD被引
1
次
|
|
|
|
18.
Xiao J. Simulation analysis of electromagnetic shielding of electronic device chassis.
Proc. of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits,2019:91-93
|
CSCD被引
1
次
|
|
|
|
19.
Khoshniat A. System level electromagnetic compatibility remedy using absorbing frequency selective surfaces.
Proc.of the IEEE Symposiumon Electromagnetic Compatibility, Signal Integrityand Power Integrity,2018:368-373
|
CSCD被引
1
次
|
|
|
|
20.
Leferin K F. Risk-based VS rule-based electromagnetic compatibility in large installations.
Proc.of the IEEE 4th Global Electromagnetic Compatibility Conference,2018
|
CSCD被引
1
次
|
|
|
|
|