激光扫描共聚焦荧光显微镜技术及其在地球生物学中的应用
Confocal Laser Scanning Microscopy and its Application in Geobiology
查看参考文献345篇
文摘
|
光学显微镜作为生命科学研究中的必要手段,经过近400年的发展其性能已得到显著的提升。激光扫描共聚焦荧光显微镜成像技术的出现,使得生物体微观三维结构的观察成为可能,与荧光探针技术的结合更是实现了生物样品从定性到原位定量分析的质的飞跃,同时还可提供生物体微观立体的成分结构信息。本文介绍了激光扫描共聚焦显微镜和荧光探针技术的发展现状、原理及应用方案,列举了该技术在地球生物学领域的主要应用。基于此提出了激光扫描共聚焦显微镜成像技术改进的方向,指出多种显微平台技术联用对生命科学的积极效应,最终实现地球生物学的长足发展。 |
其他语种文摘
|
As an essential tool in life science research,the performance of optical microscopy has been remarkably improved over the past 400 years. The emergence of confocal laser scanning microscopy (CLSM) has made it possible to observe the high-resolution three-dimensional microscopic structures of organisms. The combination of CLSM and fluorescent probe technology has achieved the qualitative leap from the qualitative analysis to the quantitative in-situ structural,morphological and compositional characterization of biological samples. Here we have introduced the current states of development, principles and applications of confocal laser scanning microscope and fluorescent probe technology,especially introduced the applications in the field of geobiology. We then have proposed several directions for improving performances of the CLSM and the combination of CLSM with multiple microscopies,to further facilitate their applications in life sciences and to finally advance the development of geobiology. |
来源
|
矿物岩石地球化学通报
,2020,39(6):1141-1172 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2020.39.091
|
关键词
|
激光扫描共聚焦荧光显微镜
;
荧光探针
;
地球微生物学
;
古生物学
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院第四纪科学与全球变化卓越创新中心, 中国科学院第四纪科学与全球变化卓越创新中心, 西安, 710061
3.
中国科学院地球化学研究所,月球与行星科学研究中心, 贵阳, 550081
4.
中国科学院比较行星学卓越创新中心, 中国科学院比较行星学卓越创新中心, 合肥, 230026
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学;古生物学 |
基金
|
中国科学院B类战略性先导专项课题
;
国家重点研发计划课题
;
中国科学院启动经费
;
国家自然科学基金项目
;
中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
;
微生物技术国家重点实验室开放课题
|
文献收藏号
|
CSCD:6885164
|
参考文献 共
345
共18页
|
1.
Ackerman C M. Analytical methods for imaging metals in biology: From transition metal metabolism to transition metal signaling.
Analytical Chemistry,2017,89(1):22-41
|
CSCD被引
5
次
|
|
|
|
2.
Adams M C. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells.
Methods,2003,29(1):29-41
|
CSCD被引
5
次
|
|
|
|
3.
Agronskaia A V. Integrated fluorescence and transmission electron microscopy.
Journal of Structural Biology,2008,164(2):183-189
|
CSCD被引
2
次
|
|
|
|
4.
Alberts B.
Molecular biology of the cell. 4th ed,2002
|
CSCD被引
12
次
|
|
|
|
5.
Al-Nawas B. Validation of three-dimensional surface characterising methods: Scanning electron microscopy and confocal laser scanning microscopy.
Scanning,2001,23(4):227-231
|
CSCD被引
2
次
|
|
|
|
6.
Anderson R R.
Three-dimensional scanning confocal laser microscope: US,19068998: A,1999
|
CSCD被引
1
次
|
|
|
|
7.
Baker M. Microscopy: Bright light,better labels.
Nature,2011,478(7367):137-142
|
CSCD被引
1
次
|
|
|
|
8.
Baleizao C. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.
Analytical Chemistry,2008,80(16):6449-6457
|
CSCD被引
7
次
|
|
|
|
9.
Bao X F. Design and synthesis of a novel chromium(Ⅲ). Selective fluorescent chemosensor bearing a thiodiacetamide moiety and two rhodamine B fluorophores.
Sensors and Actuators B: Chemical,2015,221:930-939
|
CSCD被引
1
次
|
|
|
|
10.
Bao X F. Synthesis and evaluation of a new Rhodamine B and Di (2-picolyl) amine conjugate as a highly sensitive and selective chemosensor for Al~(3+) and its application in living-cell imaging.
Bioorganic & Medicinal Chemistry,2015,23(4):694-702
|
CSCD被引
2
次
|
|
|
|
11.
Beija M. Synthesis and applications of Rhodamine derivatives as fluorescent probes.
Chemical Society Reviews,2009,38(8):2410-2433
|
CSCD被引
50
次
|
|
|
|
12.
Belcher C M. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.
PLoS One,2013,8(8):e72265
|
CSCD被引
1
次
|
|
|
|
13.
Bester E. Metabolic differentiation in biofilms as indicated by carbon dioxide production rates.
Applied and Environmental Microbiology,2010,76(4):1189-1197
|
CSCD被引
2
次
|
|
|
|
14.
Biswal B. A pyridine and pyrrole coupled rhodamine derivative for Co(Ⅱ) ion detection and its imaging application in plant tissues.
Sensors and Actuators B: Chemical,2016,232:410-419
|
CSCD被引
1
次
|
|
|
|
15.
Boens N. Visible Absorption and Fluorescence Spectroscopy of Conformationally Constrained, Annulated BODIPY Dyes.
Journal of Physical Chemistry A,2012,116(39):9621-9631
|
CSCD被引
1
次
|
|
|
|
16.
Bonneville S. Molecular identification of fungi microfossils in a Neoproterozoic shale rock.
Science Advances,2020,6(4):eaax7599
|
CSCD被引
8
次
|
|
|
|
17.
Boudoux C. Rapid wavelength-swept spectrally encoded confocal microscopy.
Optics Express,2005,13(20):8214-8221
|
CSCD被引
5
次
|
|
|
|
18.
Bridier A. Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity.
Microbial Biofilms: Methods and Protocols,2014:255-266
|
CSCD被引
1
次
|
|
|
|
19.
Brismar H. Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores.
Nature Biotechnology,1997,15(4):373-377
|
CSCD被引
2
次
|
|
|
|
20.
Brockmann S. Visualizing acidophilic microorganisms in biofilm communities using acid stable fluorescence dyes.
Journal of Fluorescence,2010,20(4):943-951
|
CSCD被引
1
次
|
|
|
|
|