TC2钛合金的高温热变形行为
Hot Deformation Behavior of TC2 Titanium Alloy
查看参考文献25篇
文摘
|
对TC2钛合金的高温变形行为进行了有限元模拟和热压缩实验研究,使用有限元自洽模型模拟提高流动应力曲线修正精度,分析材料的应力应变曲线特征,得到其高温流动本构方程和激活能,并进行了光学显微镜观察研究其微观组织演变规律,发现在高温低应变速率下α相的球化程度较高。绘制出TC2钛合金的功率耗散图和热加工图,结合应变速率敏感系数m研究了受m值控制的不同变形机制,最终确定了TC2钛合金的最佳加工窗口:(I)760~825℃、0.007~0.024 s~(-1);(II)850~900℃、0.018~0.37 s~(-1);(III)900~950℃、1~10 s~(-1),在此区间功率耗散因子较大,在材料变形过程中发生充分动态再结晶,试样的微观组织呈细小等轴状。 |
其他语种文摘
|
The high temperature deformation behavior of TC2 Ti-alloy was investigated by means of finite element simulations and isothermal hot compression tests parallelly. Firstly, the characteristic stressstrain curves of TC2 were analyzed, and the high temperature constitutive equation and activation energy were acquired. Secondly, the microstructure evolution was observed with optical microscope. It was found that the globularization of α-phase is obvious at high temperature and low strain rate. Thirdly, the power dissipation and thermal processing map of TC2 Ti-alloy were drawn. And the deformation mechanism was characterized by strain rate sensitivity exponent m. Lastly, and the optimized processing window of TC2 Ti-alloy was determined as: (I) 760~825℃, 0.007~0.024 s~(-1); (II) 850~900℃, 0.018~0.37 s~(-1); and (III) 900~950℃, 1~10 s~(-1). Within these ranges the power dissipation rate of TC2 Ti-alloy is significant and sufficient dynamic recrystallization occurs in the process of deformation. |
来源
|
材料研究学报
,2020,34(12):892-904 【核心库】
|
DOI
|
10.11901/1005.3093.2020.127
|
关键词
|
金属材料
;
TC2钛合金
;
热变形行为
;
热加工图
;
组织演变
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
3.
朝阳金达钛业股份有限公司, 朝阳, 122000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6885063
|
参考文献 共
25
共2页
|
1.
朱知寿. 我国航空用钛合金技术研究现状及发展.
航空材料学报,2014,34(4):44
|
CSCD被引
65
次
|
|
|
|
2.
.
MIL-T-81556A. Titanium and titanium alloys, Extruded bars and shapes, Aircraft quality
|
CSCD被引
1
次
|
|
|
|
3.
朱知寿. 航空结构用新型高性能钛合金材料技术研究与发展.
航空科学技术,2012(1):5
|
CSCD被引
19
次
|
|
|
|
4.
Gao P F. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure.
Mater. Sci. Eng., A,2017,689:243
|
CSCD被引
7
次
|
|
|
|
5.
欧阳德来. 锻态TB6钛合金β 相区压缩变形行为和动态再结晶.
材料研究学报,2019,33(3):218
|
CSCD被引
5
次
|
|
|
|
6.
Chen W. Deformation behavior and microstructure evolution during hot working of Ti60 alloy with lamellar starting microstructure.
J. Alloys Compd,2019,792:389
|
CSCD被引
6
次
|
|
|
|
7.
Lin Y C. Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures.
Vacuum,2019,169:108878
|
CSCD被引
9
次
|
|
|
|
8.
鲍如强. 加工图在钛合金中的应用.
材料导报,2004,18(7):30
|
CSCD被引
1
次
|
|
|
|
9.
Kumar K B. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600).
J. Alloys Compd,2016,691:906
|
CSCD被引
1
次
|
|
|
|
10.
Wang Z. Characterization of high-temperature deformation behavior andprocessing map of TB17 titanium alloy.
J. Alloys Compd,2017,692:149
|
CSCD被引
29
次
|
|
|
|
11.
Balasundar I. On the high temperature deformation behaviour of titanium alloy BT3-1.
Mater. Sci. Eng., A,2017,684:135
|
CSCD被引
8
次
|
|
|
|
12.
Xu X. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field.
Trans. Nonferrous Met. Soc. China,2016,26(11):2874
|
CSCD被引
18
次
|
|
|
|
13.
Fan X G. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution.
Int. J. Plast,2011,27(11):1833
|
CSCD被引
37
次
|
|
|
|
14.
贾宝华.
钛合金材料的塑性变形机制及本构关系研究,2015
|
CSCD被引
3
次
|
|
|
|
15.
Zhang Z X. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65.
J. Mater. Sci. Technol,2020,49:56
|
CSCD被引
14
次
|
|
|
|
16.
梁后权. 高温变形过程中的动态再结晶类型识别.
中国科学,2014,44(12):1309
|
CSCD被引
1
次
|
|
|
|
17.
陈慧琴. 钛合金热变形机制及微观组织演变规律的研究进展.
材料工程,2007(1):61
|
CSCD被引
1
次
|
|
|
|
18.
孟庆刚.
ATI425合金的塑性变形行为研究,2016
|
CSCD被引
1
次
|
|
|
|
19.
Chang L W. Isothermal compression behavior and constitutive modeling of Ti-5Al-5Mo-5V-1Cr-1Fe alloy.
Nonferrous Met. Soc. China, Trans,2018,28(6):1114
|
CSCD被引
10
次
|
|
|
|
20.
Mikhaylovskaya A V. Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloy.
Mater. Sci. Eng., A,2017,708:469
|
CSCD被引
6
次
|
|
|
|
|