FeCrNiMo激光熔覆层组织与电化学腐蚀行为研究
Microstructure and Electrochemical Corrosion Behavior of FeCrNiMo Layer Fabricated by Laser Cladding
查看参考文献28篇
文摘
|
目的研究所设计FeCrNiMo激光熔覆层的组织结构及电化学腐蚀行为,用于解决液压支架表面防护与修复问题。方法采用激光熔覆技术在27SiMn钢表面制备FeCrNiMo合金熔覆层,通过XRD、光学显微镜和SEM表征其微观组织结构,利用动电位极化与交流阻抗谱技术研究熔覆层电化学腐蚀行为。结果在适宜工艺条件下实现了单道熔覆层厚度达2 mm以上,且无明显气孔、裂纹等缺陷。熔覆层具有胞状枝晶组织特征,枝晶内为马氏体,晶间富Cr、Mo的铁素体有效缓解了马氏体相变的高应力,达到了较好的强韧化匹配。熔覆层在3.5%NaCl和0.5 mol/L H_2SO_4溶液中均呈现出明显的钝化行为,钝化区间宽度分别为300 mV和1310 mV,自腐蚀电位分别为–140.2 mV和2.3 mV,自腐蚀电流密度分别为5.0×10~(–8)A/cm~2和1.3×10~(–3) A/cm~2,极化电阻分别为3.5×10~5 Ω·cm~2和6261.4 Ω·cm~2,具有较为优异的耐腐蚀性能,且显著优于基体材料,但其双相组织特征易导致微区发生选择性腐蚀。结论所设计的FeCrNiMo合金及相应激光熔覆工艺,满足实际工程对于熔覆层高效制备、成形质量及耐蚀性的要求,可用于液压支架表面防护与修复。 |
其他语种文摘
|
The work aims to study the microstructure and electrochemical corrosion behavior of FeCrNiMo laser cladding layer, so as to solve the problems of hydraulic support surface protection and repair. FeNiCrMo alloy layer was prepared on 27SiMn steel substrate by laser cladding, and the microstructure and electrochemical corrosion behavior of this layer were investigated by XRD, optical microscope, SEM, potentiodynamic polarization and electrochemical impedance spectroscopy. Under optimized processing parameters, the layer had a single-cladding thickness of over 2 mm, without obvious defects like pores, cracks. The cladding layer presented a cellular dendritic structure involving martensite in dendrite and intergranular Cr/Mo-rich ferrite, thus achieving a good balance of strengthening and toughening. The cladding layer exhibited obvious passivation behavior in both 3.5wt% NaCl and 0.5 mol/L H_2SO_4 solutions. The passive region had a width of 300 mV and 1310 mV, the corrosion potential was detected to be –140.2 mV and 2.3 mV, the corrosion current density was measured as 5.0×10~(–8) A/cm~2 and 1.3×10~(–3) A/cm~2, and the polarization resistance was calculated to be 3.5×10~5 Ω·cm~2 and 6261.4 Ω·cm~2, respectively. This cladding layer depicted excellent corrosion resistance that was superior to the substrate, although selective corrosion occurred in micro-area due to duplex phase structure. Therefore, the designed FeNiCrMo alloy and related laser cladding parameters satisfy the engineering demands for processing efficiency and performance and can be used for protecting and repairing hydraulic supports. |
来源
|
表面技术
,2020,49(12):228-234 【核心库】
|
DOI
|
10.16490/j.cnki.issn.1001-3660.2020.12.026
|
关键词
|
激光熔覆
;
FeCrNiMo合金
;
微观组织
;
动电位极化
;
交流阻抗谱
|
地址
|
1.
北京工业大学材料与制造学部, 北京, 100124
2.
矿冶科技集团有限公司, 北京, 100160
3.
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-3660 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划项目
|
文献收藏号
|
CSCD:6884596
|
参考文献 共
28
共2页
|
1.
王志华. 液压支架立柱的腐蚀机理及其防护.
矿山机械,2011,39(9):16-19
|
CSCD被引
10
次
|
|
|
|
2.
卜美兰. 耐腐蚀煤矿用液压支架立柱.
煤矿机械,2012,33(8):151-152
|
CSCD被引
2
次
|
|
|
|
3.
Shao Q. The influence on the corrosion of hydraulic support system of chloride ions in the transmission medium and preventive measures.
Procedia engineering,2011,26:1214-1219
|
CSCD被引
3
次
|
|
|
|
4.
周克崧. 热喷涂技术替代电镀硬铬的研究进展.
中国有色金属学报,2004(S1):182-191
|
CSCD被引
23
次
|
|
|
|
5.
Picas J A. Tribological evaluation of HVOF thermal-spray coatings as a hard chrome replacement.
Surface and interface analysis,2011,43(10):1346-1353
|
CSCD被引
3
次
|
|
|
|
6.
刘翔宇. 液压支架立柱的维修及再造技术分析.
机电工程技术,2019,48(12):236-238
|
CSCD被引
2
次
|
|
|
|
7.
田洪芳. 激光熔覆FeNiCrBSi系列多组元合金粉末的液压支架立柱.
热喷涂技术,2019,11(4):66-71
|
CSCD被引
1
次
|
|
|
|
8.
邵延凡. 双相不锈钢表面激光熔覆钴基合金组织和性能研究.
表面技术,2020,49(4):299-305
|
CSCD被引
12
次
|
|
|
|
9.
Guilemany. Comparative study of Cr_3C_2-NiCr coatings obtained by HVOF and hard chromium coatings.
Corrosion science,2006,48(10):2998-3013
|
CSCD被引
5
次
|
|
|
|
10.
谢恩雨. FeNiCoTiNb低膨胀激光熔覆涂层的组织特征及摩擦学行为.
表面技术,2019,48(8):206-211
|
CSCD被引
1
次
|
|
|
|
11.
解文正. 激光熔覆技术在液压支架上的应用研究.
煤矿机械,2010,31(10):106-108
|
CSCD被引
8
次
|
|
|
|
12.
靳鸣. 激光熔覆2205双相不锈钢/TiC复合涂层的显微组织与性能.
激光与光电子学进展,2018,55(11):291-296
|
CSCD被引
2
次
|
|
|
|
13.
韩文静. 单体液压支柱缸体激光熔覆Ni60A+20% WC性能.
煤炭学报,2012,37(2):340-343
|
CSCD被引
15
次
|
|
|
|
14.
Majumdar J D. Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel.
Applied surface science,2005,247(1):373-377
|
CSCD被引
13
次
|
|
|
|
15.
Rooyen C V. Microstructural development during laser cladding of low-C martensitic stainless steel.
Welding in the world,2008,52(3/4):22-29
|
CSCD被引
1
次
|
|
|
|
16.
Zhang Z. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser.
Materials & design,2016,109(5):686-699
|
CSCD被引
14
次
|
|
|
|
17.
Hemmati I. The effect of cladding speed on phase constitution and properties of AISI431 martensite stainless steel laser deposited coatings.
Surface & coatings technology,2011,205(21/22):5235-5239
|
CSCD被引
16
次
|
|
|
|
18.
Khobragade N N. Corrosion behaviour of chrome-manganese austenitic stainless steels and AISI 304 stainless steel in chloride environment.
Transactions of the Indian Institute of Metals,2014,67(2):263-273
|
CSCD被引
2
次
|
|
|
|
19.
Sandvik B P J. The crystallography and microstructure of lath martensite formed in type 301 stainless steel.
Scripta metallurgica,1984,18(1):81-86
|
CSCD被引
2
次
|
|
|
|
20.
Ghosh S K. Effect of reversion of strain induced martensite on microstructure and mechanical properties in austenitic stainless steel.
Journal of materials science,2011,46(10):3480-3487
|
CSCD被引
3
次
|
|
|
|
|