基于第二粘性的Navier-Stokes方程组求解正激波结构
Investigation of Normal Shock Structure by Using Navier-Stokes Equations with the Second Viscosity
查看参考文献32篇
文摘
|
为考察气体第二粘性(体积粘性)对正激波内部流动的影响机制,数值求解含第二粘性的一维Navier- Stokes方程组.结果表明:第二粘性对激波内部的密度、热流和能量分布等物理量具有抹平效应,导致热流和熵流的峰值减小、激波厚度增加,体积粘性耗散的增加使得一部分机械能转化为内能;考虑第二粘性所计算的密度分布和激波厚度大为改善,与实验数据吻合较好;当马赫数为1.2≤Ma≤10,激波内部的Knudsen数满足0.12≤Kn≤ 0.4,对于马赫数Ma≤4.0的激波内部流动,考虑第二粘性的连续流Navier-Stokes方程组能够准确地模拟正激波结构. |
其他语种文摘
|
To investigate influence mechanism of the second viscosity on internal flow of a normal shock wave,one-dimensional Navier-Stokes equations are numerically solved. It indicates that the second viscosity has a smoothing effect on density,heat flow and energy distribution in the shock wave,which results in a decrease of peak value of heat and entropy flows,and an increase of shock thickness. Due to the production of normal viscous dissipation,some lost mechanical energy is converted into internal energy. As considering the second viscosity,density distribution and shock thickness are greatly improved. They are in good agreement with experimental data. In addition,Knudsen number is obtained 0.12≤Kn≤0.4 within Mach number range from 1.2 to 10. It indicates that Navier-Stokes equations with the second viscosity simulate normal shock structure more accurately. |
来源
|
计算物理
,2020,37(5):505-513 【扩展库】
|
DOI
|
10.19596/j.cnki.1001-246x.8121
|
关键词
|
Navier-Stokes方程
;
Stokes假设
;
第二粘性
;
体积粘性,正激波结构
|
地址
|
1.
北京应用物理与计算数学研究所, 北京, 100094
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-246X |
学科
|
力学 |
基金
|
中国博士后科学基金
;
国家自然科学基金青年基金
|
文献收藏号
|
CSCD:6883542
|
参考文献 共
32
共2页
|
1.
武际可.
力学史,2010
|
CSCD被引
2
次
|
|
|
|
2.
Stoke G G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids.
Transactions of the Cambridge Philosophical Society,1845,8(22):287-342
|
CSCD被引
1
次
|
|
|
|
3.
吴望一.
流体力学,1982
|
CSCD被引
64
次
|
|
|
|
4.
张树才(译).
激波与高温流体动力学现象物理学,1985
|
CSCD被引
1
次
|
|
|
|
5.
Landau L D.
Fluid mechanics,1959
|
CSCD被引
10
次
|
|
|
|
6.
Wang C.
Transport phenomena in polyatomic gases. Report No CM-681,1951
|
CSCD被引
2
次
|
|
|
|
7.
Monchick L. Formal kinetic theory of transport phenomena in polyatomic gas mixtures.
The Journal of Chemical Physics,1963,39(3):654-669
|
CSCD被引
5
次
|
|
|
|
8.
Chapman S.
The mathematical theory of non-uniform gases,1970
|
CSCD被引
37
次
|
|
|
|
9.
李馨东. 可压缩流体体积黏性的连续介质理论.
中国科学:物理学力学天文学,2016,46(3):034701
|
CSCD被引
3
次
|
|
|
|
10.
Li X D. Continuum perspective of bulk viscosity in compressible fluids.
Journal of Fluid Mechanics,2017,812:966-990
|
CSCD被引
2
次
|
|
|
|
11.
Sherman D S.
A low-density wind-tunnel study of shock-wave structure and relaxation phenomena in gases. NACA TN-3298,1955
|
CSCD被引
2
次
|
|
|
|
12.
Prangsma G J. Ultrasonic determination of the volume viscosity of N_2, CO, CH_4 and CD4 between 77 and 300 K.
Physics,1973,64(2):278-288
|
CSCD被引
4
次
|
|
|
|
13.
Ash R L.
Second coefficient of viscosity in air. NASA CR-187783,1991
|
CSCD被引
2
次
|
|
|
|
14.
Graves R E. Bulk viscosity: Past to present.
Journal of Thermophysics and Heat Transfer,1999,13(3):337-342
|
CSCD被引
3
次
|
|
|
|
15.
Elizarova T G. Numerical simulation of shock wave structure in nitrogen.
Physics of Fluids,2007,19:068102
|
CSCD被引
4
次
|
|
|
|
16.
Chikitkin A V. Effect of bulk viscosity in supersonic flow past spacecraft.
Applied Numerical Mathematics,2015,93:47-60
|
CSCD被引
4
次
|
|
|
|
17.
Emanuel G. Effect of bulk viscosity on a hypersonic boundary layer.
Physics of Fluids,1992,4:491-495
|
CSCD被引
2
次
|
|
|
|
18.
Gonzalez H. Effect of bulk viscosity on Couette flow.
Physics of Fluids,1993,5:1267-1268
|
CSCD被引
2
次
|
|
|
|
19.
Cramer M S. Effect of large bulk viscosity on large-Reynolds-number flows.
Journal of Fluid Mechanics,2014,751:142-163
|
CSCD被引
2
次
|
|
|
|
20.
Bahmani F. Suppression of shock-induced separation in fluids having large bulk viscosities.
Journal of Fluid Mechanics,2014,756:1-10
|
CSCD被引
3
次
|
|
|
|
|