电絮凝-过滤技术去除海水养殖水体中污染物的研究
Study on removal of pollutants from marine aquaculture wastewater by electrocoagulation-filtration technology
查看参考文献35篇
文摘
|
为提高对海水养殖水体的预处理水平,降低后续水处理单元的规模和能耗,设计了一套连续流电絮凝(Electrocoagulation,EC)-过滤预处理系统,探讨阳极材料、EC反应器水力停留时间(HRT)及过滤孔径对其水处理能力的影响。试验发现,EC过程对化学需氧量(COD_(Mn))的去除率随着阳极中Fe电极比例的增加而增加且影响显著(P<0.05);阳极材料对总氮(TN)的去除无显著影响(P>0.05);EC过程中水体pH呈现下降趋势。相比Al阳极或Fe阳极,Al-Fe组合电极做阳极时,系统对COD_(Mn)和TN的去除效果更好。随着HRT的增加和过滤孔径的减小,系统对COD_(Mn)和TN的去除率增加。在HRT为4.5 min、阳极为2Al+2Fe、过滤孔径为45 μm的条件下,EC-过滤系统对COD_(Mn)和TN的去除率最高,分别为(53.02± 0.74)%和(58.90± 1.96)%,能耗为(31.35±0.6)×10~(-3)kWh /m~3,Al阳极和Fe阳极的溶解速率分别为(0.11±0.01)mg /s和(0.05±0.00)mg /s。研究表明,EC-过滤系统对COD_(Mn)和TN有较好的去除效果,EC能明显提高后续过滤设备的处理效率。 |
其他语种文摘
|
In order to improve the pretreatment of marine aquaculture wastewater,and reduce the scale and energy consumption of subsequent water treatment equipment,a continuous flow electrocoagulation(EC)-filtration pretreatment system was designed to investigate the influences of anode materials,hydraulic retention time(HRT)of EC reactor and filtration pore size on its water treatment capacity.It was found that the removal rate of EC on chemical oxygen demand(COD_(Mn))increased with the addition of the Fe electrode proportion in the anode,and the effect was significant(P <0.05).The anode materials had no significant effect on the removal of total nitrogen(TN)(P >0.05).The pH of water decreased during EC.Compared with Al or Fe anode,when Al-Fe compound electrode was used as anode,the system could better remove COMMn and TN.In addition,with the increase of HRT and the decrease of filtration pore size,the removal rate of the system on COD_(Mn) and TN increased.When HRT was 4.5 min,anode was 2Al+2Fe and filtration pore size was 45 μm, the removal rate of the system on COD_(Mn) and TN was the highest,respectively(53.02±0.74)% and(58.90± 1.96)%,the energy consumption was(31.35±0.6)×10~(-3)kWh /m~3,and the dissolution rate of Al anode and Fe anode was(0.11±0.01)mg /s and(0.05±0.00)mg /s respectively.The study showed that EC-filtration system had fairly good removal effects on COD_(Mn) and TN,and EC could significantly enhance the treatment efficiency of subsequent filtration equipment. |
来源
|
渔业现代化
,2020,47(6):26-34 【扩展库】
|
DOI
|
10.3969/j.issn.1007-9580.2020.06.005
|
关键词
|
电絮凝
;
过滤
;
养殖废水
;
水处理
;
阳极材料
;
能耗
|
地址
|
1.
中国科学院海洋研究所, 中科院实验海洋生物学重点实验室, 山东, 青岛, 266071
2.
中国科学院大学, 北京, 100049
3.
中国科学院海洋大科学研究中心, 山东, 青岛, 266071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-9580 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
山东省重点研发计划
;
政府间国际科技创新合作重点专项
;
青岛市海洋经济创新发展示范城市产业链协同创新类项目
|
文献收藏号
|
CSCD:6882787
|
参考文献 共
35
共2页
|
1.
农业农村部渔业渔政管理局.
2019年中国渔业统计年鉴,2019:1-22
|
CSCD被引
2
次
|
|
|
|
2.
李甍. 适宜牡蛎与龙须菜配比提高含氮养殖废水处理效果.
农业工程学报,2015,31(11):243-248
|
CSCD被引
5
次
|
|
|
|
3.
姜妍君. 海水循环养殖系统水处理工艺综述.
环境化学,2013,32(3):410-418
|
CSCD被引
4
次
|
|
|
|
4.
Xiao R. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems.
Reviews in Aquaculture,2019,11(3):863-895
|
CSCD被引
3
次
|
|
|
|
5.
Garcia-Segura S. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals,emerging applications and its association with other technologies.
Journal of Electroanalytical Chemistry,2017,801:267-299
|
CSCD被引
14
次
|
|
|
|
6.
Kimura K. Microfiltration of different surface waters with/without coagulation: Clear correlations between membrane fouling and hydrophilic biopolymers.
Water Research,2014,49:434-443
|
CSCD被引
7
次
|
|
|
|
7.
Moussa D T. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges.
Journal of Environmental Management,2017,186:24-41
|
CSCD被引
29
次
|
|
|
|
8.
Xie S. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.
Environmental Science & Technology,2017,51(2):889-896
|
CSCD被引
6
次
|
|
|
|
9.
Sun L. Nickel removal from wastewater by electroflocculation-filtration hybridization.
Desalination,2009,249(2):832-836
|
CSCD被引
3
次
|
|
|
|
10.
李富华. 电絮凝/膜过滤技术处理含铅废水的研究.
电镀与环保,2015,35(2):47-49
|
CSCD被引
4
次
|
|
|
|
11.
Ben-Sasson M. Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration.
Chemical Engineering Journal,2013,232:338-345
|
CSCD被引
3
次
|
|
|
|
12.
Sari M A. Surface water nanofiltration incorporating (electro) coagulation-microfiltration pretreatment: Fouling control and membrane characterization.
Journal of Membrane Science,2013,437:249-256
|
CSCD被引
4
次
|
|
|
|
13.
Chellam S. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling,NOM,DBP,and virus control.
Journal of Hazardous Materials,2016,304(2):490-501
|
CSCD被引
13
次
|
|
|
|
14.
Garcia-Morales M A. Pretreatment of real wastewater from the chocolate manufacturing industry through an integrated process of electrocoagulation and sand filtration.
International Journal of Photoenergy,2018,2018:1-7
|
CSCD被引
1
次
|
|
|
|
15.
Govindan K. Effect of dye molecules and electrode material on the settling behavior of flocs in an electrocoagulation induced settling tank reactor (EISTR).
Separation and Purification Technology,2014,133:396-406
|
CSCD被引
1
次
|
|
|
|
16.
Rong H. Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions.
Journal of Hazardous Materials,2013,252:330-337
|
CSCD被引
2
次
|
|
|
|
17.
Kobya M. Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Al-Fe plate electrodes.
Environmental Progress & Sustainable Energy,2014,33(1):131-140
|
CSCD被引
3
次
|
|
|
|
18.
Isaac O P. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes.
Ecological Engineering,2018,123:65-73
|
CSCD被引
3
次
|
|
|
|
19.
中国国家标准化管理委员会.
GB17378.4-2007海洋监测规范第4部分:海水分析,2007
|
CSCD被引
2
次
|
|
|
|
20.
Heffron J. Mechanisms of virus mitigation and suitability of bacteriophages as surrogates in drinking water treatment by iron electrocoagulation.
Water Research,2019,163:114877
|
CSCD被引
2
次
|
|
|
|
|