对比源框架下的多任务贝叶斯压缩感知微波成像方法
Microwave Imaging by Multitask Bayesian Compressed Sensing Within Contrast Source Framework
查看参考文献20篇
文摘
|
针对强散射体微波成像困难问题,本文提出了一种对比源框架下的基于拉普拉斯先验的多任务贝叶斯压缩感知方法,实现了稀疏强散射体的微波成像.在对比源框架下,基于“数据”积分方程并对成像区域网格离散建立稀疏感知模型,前向问题采用矩量法数值模拟;构造基于拉普拉斯先验的贝叶斯压缩感知分层模型;在多入射波情况下,利用多任务贝叶斯压缩感知方法对对比源进行优化求解;最后利用“状态方程”实现了目标函数的重构.本文在考虑噪声情况下,通过对多像素单目标、不均匀目标、多目标的微波成像数值模拟,并与共轭梯度方法、一阶Born近似框架下的多任务贝叶斯压缩感知方法的重构结果比较,验证了本文方法的有效性和鲁棒性. |
其他语种文摘
|
Aiming at the difficulty of microwave imaging of strong scatterers,a multi-task Bayesian compressed sensing method based on Laplacian priori is proposed,which realizes microwave imaging of sparse strong scatterers. In the framework of contrast sources, sparse sensing model is established based on the“data”integral equation and the mesh discretization in the imaging region. The forward problem is simulated by the moment method; a Bayesian compressed sensing hierarchical model based on Laplacian priori is constructed; and in the case of multi-incident waves,multi-task Bayesian compressed sensing method is used to optimize the contrast source. Finally, the objective function is reconstructed by using the“state equation”. Considering the influence of noise,Through the numerical simulation of multi-pixel single target,nonuniform single target and multi-target microwave imaging, and compared with the reconstructed results of conjugate gradient method and multi-task Bayesian compressed sensing method in the first-order Born approximation framework,which verifies the effectiveness and robustness of the proposed algorithm. |
来源
|
电子学报
,2020,48(11):2208-2214 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.11.016
|
关键词
|
微波成像
;
对比源
;
共轭梯度
;
一阶Born近似
;
拉普拉斯先验
;
多任务贝叶斯压缩感知
|
地址
|
三峡大学计算机与信息学院, 湖北, 宜昌, 443002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6881578
|
参考文献 共
20
共1页
|
1.
吴一戎. 稀疏微波成像研究进展(科普类).
雷达学报,2014,3(4):383-395
|
CSCD被引
23
次
|
|
|
|
2.
Wang Y M. An iterative solution of the two-dimensional electromagnetic inverse scattering problem.
International Journal of imaging Systems and Technology,1989,1(1):100-108
|
CSCD被引
24
次
|
|
|
|
3.
Chew W C. Reconstruction of two-dimensional permittivity distribution using the distorted Born iteration method.
IEEE Transactions on Medical Imaging,1990,9(2):218-225
|
CSCD被引
43
次
|
|
|
|
4.
van den Berg P M. A contrast source inversion method.
Inverse Problems,1997,13(6):1607-1620
|
CSCD被引
23
次
|
|
|
|
5.
Oliveri G. An inexact Newton-based approach to microwave imaging within the contrast source formulation.
IEEE Transactions on Antennas and Propagation,2009,57(4):1122-1132
|
CSCD被引
2
次
|
|
|
|
6.
Chen X. Subspace-based optimization method for solving inverse-scattering problems.
IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):42-49
|
CSCD被引
4
次
|
|
|
|
7.
Chiu C C. Shape reconstruction of 2D perfectly conducting cylinder targets using the particle swarm optimization.
The Imaging Science Journal,2012,60(2):83-89
|
CSCD被引
1
次
|
|
|
|
8.
Chiu C C. Image reconstruction of a perfectly conducting cylinder by the genetic algorithm.
IEE Proceedings-Microwaves,Antennas and Propagation,1996,143(3):249-253
|
CSCD被引
4
次
|
|
|
|
9.
Rocca P. Evolutionary optimization as applied to inverse scattering problems.
Inverse Problems,2009,25(12):123003
|
CSCD被引
1
次
|
|
|
|
10.
张清河. BCGs-FFT结合BP神经网络反演金属介质复合柱体目标参数.
电子学报,2010,38(5):1217-1220
|
CSCD被引
1
次
|
|
|
|
11.
张清河. 基于支持向量机的复合柱体目标参数反演.
电波科学学报,2012,27(6):1232-1237
|
CSCD被引
5
次
|
|
|
|
12.
王芳芳. 基于支持向量机的电磁逆散射方法.
物理学报,2012,61(8):147-154
|
CSCD被引
3
次
|
|
|
|
13.
焦李成. 压缩感知回顾与展望.
电子学报,2011,39(7):1652-1662
|
CSCD被引
4
次
|
|
|
|
14.
王哲. 压缩感知理论在矩量法中的应用.
物理学报,2014,63(12):14-20
|
CSCD被引
2
次
|
|
|
|
15.
柴水荣. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究.
物理学报,2015,64(6):43-50
|
CSCD被引
1
次
|
|
|
|
16.
Carlin M. Directions-of-arrival estimation through Bayesian compressive sensing strategies.
IEEE Transactions on Antennas and Propagation,2013,61(7):3828-3838
|
CSCD被引
24
次
|
|
|
|
17.
Migliore M D. A compressive sensing approach for array diagnosis from a small set of near-field measurements.
IEEE Transactions on Antennas and Propagation,2011,59(6):2127-2133
|
CSCD被引
11
次
|
|
|
|
18.
Fuchs B. Synthesis of sparse arrays with focused or shaped beam pattern via sequential convex optimizations.
IEEE Transactions on Antennas and Propagation,2012,60(7):3499-3503
|
CSCD被引
11
次
|
|
|
|
19.
Poli L. Microwave imaging within the first-order Born approximation by means of the contrastfield Bayesian compressive sensing.
IEEE Transactions on Antennas and Propagation,2012,60(6):2865-2879
|
CSCD被引
4
次
|
|
|
|
20.
Oliveri G. A Bayesian-compressive-sampling-based inversion for imaging sparse scatterers.
IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3993-4006
|
CSCD被引
6
次
|
|
|
|
|