帮助 关于我们

返回检索结果

TKX-50/GO复合含能材料的制备及热分解特性
Preparation and Thermal Decomposition Characteristics of TKX-50/GO Composite Energetic Materials

查看参考文献27篇

文摘 为了研究5,5′-联四唑-1,1′-二氧二羟胺(TKX-50)/氧化石墨烯(GO)纳米复合含能材料的热分解性能,采用液氮喷雾冷冻干燥法,制备了TKX-50/GO复合材料;通过扫描电子显微镜-能谱仪(SEM-EDS)、X射线衍射仪(XRD),对样品的形貌、结构以及表面元素含量进行了表征和分析;采用热重-差示扫描量热法(TG-DSC)分析了复合材料的热分解性能;采用Kissinger法计算了其表观活化能。结果表明,采用液氮冷冻喷雾干燥法制备的TKX-50/GO复合材料具有纳米级层状网络结构;与TKX-50相比,TKX-50/GO复合含能材料的第一阶段分解峰峰温向低温方向移动12.0、12.5、12.2℃,第二阶段分解峰峰温向低温方向移动12.5℃和16.4℃,随着GO含量的增加,第二阶段分解峰变得不明显,TKX-50/GO_5两个分解阶段重叠,表观活化能从146.2kJ/mol提高到163.3、168.5和172.9kJ/mol。GO提高了复合含能材料的活化能垒,使分解峰温提前,缩短了反应区间时间,从而提高了能量释放速率,促进了TKX-50/GO复合材料的热分解。
其他语种文摘 In order to study the thermal decomposition properties of 5,5′-bistetrazole-1,1′-diolate(TKX-50)/graphene oxide (GO)nano-composite energetic materials,liquid nitrogen-assisted spray freeze-drying method was used to prepare TKX-50/GO composite materials.The morphology,structure and surface element of the samples were characterized and analyzed by using the scanning electron microscopy-energy spectroscopy(SEM-EDS)and X-ray diffraction(XRD).The thermal decomposition properties of composites were analyzed by using the thermogravimetry-differential scanning calorimetry(TG-DSC).The apparent activation energy was calculated by using the Kissinger method.The results show that the TKX-50/GO composite prepared by liquid nitrogen-assisted freeze spray drying method has nano-scale layered network structure.Compared to the TKX-50,the first stage decomposition peak temperature of TKX-50/GO composite energetic material decreases by 12.0,12.5and 12.2℃,and the second stage decomposition peak temperature decreases by 12.5℃and 16.4℃.With the increase of GO content,the decomposition peak in the second stage is not obvious,and the two decomposition stages of TKX-50/GO_5 are overlapped.The apparent activation energy of the nano-composite materials increases from 146.2kJ/mol to 163.3,168.5 and 172.9kJ/mol compared to the TKX-50,respectively.GO improves the activation energy barrier of the composite energetic material,decreases the decomposition peak temperature and shortens the reaction interval time,so the GO improves the energy release rates and promotes the thermal decomposition of TKX-50/GO composite materials.
来源 火炸药学报 ,2020,43(6):631-635 【核心库】
DOI 10.14077/j.issn.1007-7812.201908021
关键词 物理化学 ; 氧化石墨烯 ; 5,5′-联四唑-1,1′-二氧二羟胺 ; TKX-50 ; 网络纳米结构 ; 复合含能材料 ; 热分解
地址

中北大学环境与安全工程学院, 山西, 太原, 030051

语种 中文
文献类型 研究性论文
ISSN 1007-7812
学科 化学;武器工业
基金 国防科工局安全专项资助
文献收藏号 CSCD:6878780

参考文献 共 27 共2页

1.  Fischer N. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammoniumm 5,5'-bistetrazole-1,1'-diola-te. Journal of Materials Chemistry,2012,22(38):20418-20422 CSCD被引 119    
2.  苗成才. 新型联四唑类含能材料TKX-50的研究进展. 化学推进剂与高分子材料,2015,13(5):7-12 CSCD被引 6    
3.  朱周朔. 5,5′-联四唑-1,1′-二氧二羟铵的合成及其性能. 含能材料,2014,22(3):332-336 CSCD被引 20    
4.  Daniel R D. The chemistry of graphene oxide. Chemical Society Reviews,2010,39(1):228-240 CSCD被引 433    
5.  Krishnan D. Energetic graphene oxide:challenges and opportunities. Nano Today,2012,7(2):137-152 CSCD被引 14    
6.  Yang G W. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications,2008(48):6537-6539 CSCD被引 35    
7.  Kou L. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale,2011,3(2):519-528 CSCD被引 30    
8.  Dave S H. Chemistryand structure of graphene oxide via direct imagin-g. ACS Nano,2016,10(8):7515-7522 CSCD被引 8    
9.  Li Y. Functionalizationof graphene oxide by tetrazine derivatives:a vers-atile approach toward covalent bridges between graphene sheets. Chemistry of Materials,2015,27(12):4298-4310 CSCD被引 4    
10.  Yan Q L. Highly energ-etic compositions based on functionalized carbon nanom-aterials. Nanoscale,2016,8(9):4799-4851 CSCD被引 34    
11.  McCrary P D. Graphene and graphene oxide can"lubricate" ionic liqui-ds based on specific surface interactions leading to impr-oved low temperature hypergolic performance. Angew-andte Chemie-International Edition,2012,51(9):9784-9787 CSCD被引 5    
12.  Yuan B. Initial mechanisms forthe decomposition of electronically excited energ-etic salts:TKX-50and MAD-X1. Journal of Physical Chemistry A,2015,119(12):2965-2981 CSCD被引 8    
13.  Jia J H. Crystal structure transfo-rmation and step-by-step thermal decomposition behavior ofdihydroxylammonium 5,5'-bistetrazole-1,1'-diolate. RSC Advances,2017,7(77):49105-49113 CSCD被引 4    
14.  Huang H F. Compatibility study of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)with some energetic materials and inert materials. Journal of Energetic Materials,2015,33(1):66-72 CSCD被引 16    
15.  Huang H F. Thermal characterizationof the promising energetic material TKX-50. Journal of Thermal Analysis and Calorimetry,2015,121(2):705-709 CSCD被引 14    
16.  Lu Z P. Heat-Induced solidsolid phase transformation of TKX-50. Journal of Physical Chemistry C,2017,121(15):8262-8271 CSCD被引 8    
17.  Xiao L B. Thermal behavior and safety of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate. Journal of Thermal Analysis and Calorimetry,2016,123(1):653-657 CSCD被引 10    
18.  曹雄. 快速冷冻干燥法制备网络纳米结构TKX-50的热分解和燃烧特性. 含能材料,2018,26(12):1044-1048 CSCD被引 3    
19.  Dreger Z A. High-pressure structural response of an insensitive energetic crystal:dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50). Journal of Physical Chemistry C,2017,121(10):5761-5767 CSCD被引 8    
20.  Dreger Z A. High pressurehigh temperature phase diagram of an energetic crystal:dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50). Chemical Physics Letters,2017,697:212-218 CSCD被引 10    
引证文献 3

1 曾见有 石墨双炔/RDX复合物的热分解性能 火炸药学报,2021,44(4):474-483
CSCD被引 5

2 李胜楠 镍铁石墨烯基复合纳米材料的制备及其对高氯酸铵的催化分解性能 火炸药学报,2021,44(6):782-788
CSCD被引 2

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号