帮助 关于我们

返回检索结果

日冕极紫外波研究进展
Research progress on coronal extreme ultraviolet waves

查看参考文献145篇

申远灯 1 *   李波 2   陈鹏飞 3   周新平 1   刘煜 1  
文摘 高温低密日冕磁化等离子体介质可承载多种波动模式的传播.本文主要介绍低日冕中两类常见的极紫外波动现象:大尺度极紫外波和准周期快磁声波.大尺度极紫外波是低日冕中全球性传播的大尺度扰动现象,它通常与耀斑、日冕物质抛射等剧烈太阳爆发活动紧密相关. 20世纪60年代,大尺度扰动现象(莫尔顿波)首先在太阳色球层被观测到,相应的理论模型预言了低日冕中也必然存在与莫尔顿波相关的大尺度扰动现象.直到20世纪90年代,空间望远镜才探测到与莫尔顿波类似的日冕大尺度波动现象(大尺度极紫外波).然而,关于大尺度极紫外波的物理本质和激发机制长期以来一直存在着巨大分歧.得益于近年来空间和地面太阳望远镜的高(时间、空间)分辨、多波段、多视角观测数据,目前人们对大尺度极紫外波的激发和物理本质有了更深入和较为完备的认识.近年的高分辨观测还揭示了日冕中的另一类波动现象,即准周期快磁声波.本文将总结近年来人们对两类波动的研究进展,指出目前研究中存在的重点和难点问题,并展望未来可能的研究方向.
其他语种文摘 The hot, tenuous coronal plasma medium can support the propagation of various kinds of magnetohydrodynamic (MHD) waves, such as Alfven waves, fast and slow magnetosonic waves. These MHD waves are important for understanding the enigmatic problems of coronal heating and the acceleration of solar winds, as well as the basic physical property of the solar atmosphere and the physics behind solar eruptions. In this review, we mainly introduce two types of fast-propagating extreme ultraviolet (EUV) magnetosonic waves in the corona, namely, the large-scale (global) EUV waves and the quasiperiodic fast-propagating (QFP) magnetosonic waves. EUV waves are large-scale propagating disturbances in the corona; they are intimately related to violent solar eruptions such as flares, coronal mass ejections (CME), and radio type II bursts. In history, large-scale propagating disturbances were firstly discovered in the chromosphere in 1960s, and they were called Moreton waves. In theory, the dense chromosphere can not support the fast propagating of Moreton waves. Therefore solar physicists explained Moreton waves as the chromosphere responses of fast magnetosonic or shock waves in the corona, although people did not detected corona waves in that era due to the lack of coronal observations. Until the 1990s, the longexpected similar large-scale fast-propagating coronal disturbances called EUV waves were observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliosphereic Observatory (SOHO). EUV waves were initially thought to be fast mode magnetosonic waves driven by flare pressure pulses, and can be regarded as the coronal counterparts of Moreton waves. However, latter observations raised questions about their driving mechanism and physical nature. For their driving source it was unclear that EUV waves are driven by flare pressure pulses or CMEs. For their physical nature it was unclear that EUV waves are true MHD waves or apparent motions caused by reconfiguration of large-scale coronal magnetic fields or other mechanisms. Thanks to the high spatiotemporal resolution and multi-angle observations provided by the Solar Terrestrial Relations observatory (STEREO) and the Solar Dynamics Observatory (SDO) in recent years, we have achieved a deeper and complete understanding about the generation and physical properties of EUV waves. A common consensus reached in recent years is that at least two types of EUV waves can be detected during the eruption of a CME. One is a fast mode magnetosonic wave or shock at a speed ranged from several hundred to more than one thousand km/s, which corresponds to the coronal counterpart of a chromosphere Moreton wave; the other one whose physical nature is unclear, propagates following the fast one with a low speed generally below 500 km/s. For the driving sources of EUV waves, the majority of high resolution observations showed that they are driven by the lateral expansion of CMEs, and a few studies suggested that they can also be excited by other mechanisms such as flare pressure pulses, sudden loop expansion caused by ambient solar eruptions, coronal jets, and expanding motions of unwinding helical structure of filaments. The high spatiotemporal resolution observations taken by the SDO discovered a new type of fast mode waves called QFP waves, which have multiple wavefronts and generally propagate along magnetic field lines with a speed in the range of several hundred to more than 2000 km/s, and their periods are often similar to the quasi-periodic pulsations in the associate flares. Here we present a summary of the recent research progress about the two types of EUV waves in the corona, and try to point out the key and difficult issues, as well as the possible research topics in the future.
来源 科学通报 ,2020,65(34):3909-3923 【核心库】
DOI 10.1360/TB-2020-0748
关键词 太阳活动 ; 太阳磁场 ; 耀斑 ; 日冕物质抛射 ; 磁流体力学波
地址

1. 中国科学院云南天文台, 昆明, 650216  

2. 山东大学空间科学研究院, 威海, 264209  

3. 南京大学天文和空间科学学院, 南京, 210023

语种 中文
文献类型 综述型
ISSN 0023-074X
学科 天文学
基金 国家自然科学基金 ;  中国科学院西部之光和云南省基础研究计划
文献收藏号 CSCD:6874783

参考文献 共 145 共8页

1.  Chen P F. Coronal mass ejections: Models and their observational basis. Liv Rev Solar Phys,2011,8:1 CSCD被引 27    
2.  Moreton G E. Hα observations of flare-initiated disturbances with velocities ~1000 km/sec. Astrophys J,1960,65:494 CSCD被引 2    
3.  Chen P F. Global coronal waves. Low-Frequency Waves in Space Plasmas. Geophysical Monograph Series. 216,2016:381-394 CSCD被引 1    
4.  Uchida Y. Propagation of hydromagnetic disturbances in the solar corona and Moreton's wave phenomenon. Sol Phys,1968,4:30-44 CSCD被引 9    
5.  Tsuneta S. The soft X-ray telescope for the solar-A mission. Sol Phys,1991,136:37-67 CSCD被引 17    
6.  Delaboudiniere J P. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol Phys,1995,162:291-312 CSCD被引 29    
7.  Thompson B J. SOHO/EIT observations of an earth-directed coronal mass ejection on May 12, 1997. Geophys Res Lett,1998,25:2465-2468 CSCD被引 21    
8.  Wang Y M. EIT waves and fast-mode propagation in the solar corona. Astrophys J,2000,543:L89-L93 CSCD被引 10    
9.  Ofman L. Interaction of EIT waves with coronal active regions. Astrophys J,2002,574:440-452 CSCD被引 3    
10.  Delannee C. CME associated with transequatorial loops and a bald patch flare. Sol Phys,1999,190:107-129 CSCD被引 7    
11.  Delannee C. Another view of the EIT wave phenomenon. Astrophys J,2000,545:512-523 CSCD被引 4    
12.  Vrsnak B. Origin of coronal shock waves. Sol Phys,2008,253:215-235 CSCD被引 7    
13.  Liu W. Advances in observing various coronal EUV waves in the SDO era and their seismological applications. Sol Phys,2014,289:3233-3277 CSCD被引 5    
14.  Warmuth A. Large-scale globally propagating coronal waves. Living Rev Sol Phys,2015,12:3-104 CSCD被引 3    
15.  Kaiser M L. The STEREO mission: An introduction. Space Sci Rev,2008,136:5-16 CSCD被引 36    
16.  Pesnell W D. The Solar Dynamics Observatory (SDO). Sol Phys,2012,275:3-15 CSCD被引 61    
17.  Patsourakos S. On the nature and genesis of EUV waves: A synthesis of observations from SOHO, STEREO, SDO, and HINODE. Sol Phys,2012,281:187-222 CSCD被引 6    
18.  Lemen J R. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys,2012,275:17-40 CSCD被引 67    
19.  Liu W. Direct imaging of quasi-periodic fast propagating waves of ~2000 km s~(-1) in the low solar corona by the solar dynamics observatory atmospheric imaging assembly. Astrophys J,2011,736:L13 CSCD被引 3    
20.  Liu W. Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys J,2012,753:52-69 CSCD被引 6    
引证文献 2

1 王远方舟 窄带可调谐滤光器在太阳磁场测量中的应用 科学通报,2023,68(15):1927-1940
CSCD被引 2

2 苗玉虎 日冕准周期快模磁声波的研究进展 天文学进展,2024,42(2):224-239
CSCD被引 0 次

显示所有2篇文献

论文科学数据集

1. 2019-2022年大柴旦飞行试验太阳活动预报数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号