中国聚变工程实验堆纵场超导磁体高性能Nb_3Sn CICC导体稳定性分析
Stability Analysis of High-Performance Nb_3Sn CICC Conductor in China Fusion Engineering Testing Reactor Toroidal Field Superconducting Magnets
查看参考文献24篇
文摘
|
针对中国聚变工程实验堆(CFETR)高参数等离子体约束要求,其纵场(TF)混合磁体的设计方案为采用三种不同性能的超导导体绕制,峰值磁场可达14.43T,最大应力超过700MPa。该文结合CFETR纵场磁体面临的稳态以及瞬态热负荷条件,系统分析混合磁体中高性能Nb_3Sn四饼线圈在不同扰动长度及扰动时间工况下的稳定性温度裕度和能量裕度,并对背景场强度及有效应变等因素对稳定性裕度的影响进行讨论。结果表明,高性能Nb_3Sn CICC导体在峰值磁场及 –0.7%~–0.5%有效应变预计区间内拥有2.0K以上的温度裕度;但极端条件(B=14.43T, ε =–0.7%)下的电磁扰动(L_p=10m, t_p=100ms)对应导体能量裕度仅有11.41mJ/cc,局部恶劣工况下导体能量裕度下降严重的问题亟待解决。针对高场区单饼线圈在典型扰动下行为的计算表明,典型机械扰动(L_p=0.1m, t_p=1ms)引起的失超能够在5s内使导体热点温度升高至接近120K,这对磁体失超保护系统提出了较高的要求。 |
其他语种文摘
|
In order to obtain the high-parameter confined plasma in China fusion engineering testing reactor(CFETR), the hybrid magnets of CFETR toroidal field(TF) magnetic system is to use three kinds of superconductors with different properties. The peak magnetic field can reach 14.43T and the maximum stress exceeds 700MPa. In this paper, the temperature margin and energy margin of the high-performance Nb_3Sn pancake coils of hybrid magnets are analyzed under different perturbation lengths and durations based on steady-state and transient thermal load conditions of CFETR TF magnets. The results show that the high-performance Nb_3Sn CICC conductors have a temperature margin of 2.0K and above under the peak field and –0.7% - –0.5% effective strain. However, the energy margin for electromagnetic disturbance(L_p=10m, t_p=100ms) under extreme conditions(B=14.43T, ε =–0.7%) is only 11.41mJ/cc. The decline of energy margin under severe local conditions is a serious problem. The quench caused by typical mechanical perturbation(L_p=0.1m, t_p=1ms) can raise the hot spot temperature of the conductor to above 100K within 5 seconds, which puts forward a high demand on the magnet quench protection system. |
来源
|
电工技术学报
,2020,35(24):5031-5040 【核心库】
|
DOI
|
10.19595/j.cnki.1000-6753.tces.191369
|
关键词
|
中国聚变工程试验堆
;
纵场超导磁体
;
高性能Nb_3Sn
;
稳定性裕度
|
地址
|
1.
中国科学院等离子体物理研究所, 合肥, 230031
2.
中国科学技术大学, 合肥, 230026
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6753 |
学科
|
电工技术 |
基金
|
安徽省杰出青年基金
;
国家自然科学基金国家杰出青年科学基金
;
国家重点研发专项
;
中国科学院青年创新促进会优秀会员
|
文献收藏号
|
CSCD:6868187
|
参考文献 共
24
共2页
|
1.
Wesche R. DEMO central solenoid design based on the use of HTS sections at highest magnetic field.
IEEE Transactions on Applied Superconductivity,2018,28(3):1-5
|
CSCD被引
1
次
|
|
|
|
2.
Maksoud W A. Progress of the JT-60 SA toroidal field coils tests in the cold test facility.
IEEE Transactions on Applied Superconductivity,2018,28(3):1-4
|
CSCD被引
1
次
|
|
|
|
3.
张立晖. 磁通约束型超导限流开关系统应用.
电工技术学报,2018,33(22):152-159
|
CSCD被引
1
次
|
|
|
|
4.
刘晟源. 电力系统态势感知技术研究综述与展望.
电力系统自动化,2020,44(3):229-239
|
CSCD被引
24
次
|
|
|
|
5.
李万杰. 飞轮储能系统用超导电磁混合磁悬浮轴承设计.
电工技术学报,2020,35(增刊1):10-18
|
CSCD被引
16
次
|
|
|
|
6.
许周. 计及电/热柔性负荷的区域综合能源系统储能优化配置.
电力系统自动化,2020,44(2):53-63
|
CSCD被引
42
次
|
|
|
|
7.
Zheng Jinxing. Overview of the design status of superconducting magnet system of CFETR.
IEEE Transactions on Applied Superconductivity,2018,28(3):1-5
|
CSCD被引
4
次
|
|
|
|
8.
Yun Taosong. Concept design of CFETR tokamak machine.
IEEE Transactions on Plasma Science,2014,42(3):503-509
|
CSCD被引
67
次
|
|
|
|
9.
Bessette D. Nuclear heat, disruption loads and other AC losses and their impact on the ITER toroidal field coils conductor design.
IEEE Transactions on Appiled Superconductivity,2000,10(1):1074-1077
|
CSCD被引
3
次
|
|
|
|
10.
Bonifetto R. 4C code simulation and benchmark of ITER TF magnet cool-down from 300K to 80K.
IEEE Transactions on Applied Superconductivity,2012,22(3):4902604
|
CSCD被引
1
次
|
|
|
|
11.
Nijhuis A. Optimization of ITER Nb_3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction.
Superconductor Science & Technology,2012,25(1):24
|
CSCD被引
7
次
|
|
|
|
12.
滕玉平. ITER装置超导磁体线圈导体用超导电缆的绞制.
电工技术学报,2013,28(4):7-12
|
CSCD被引
7
次
|
|
|
|
13.
Kessel C E. Overview of the fusion nuclear science facility, a credible break-in step on the path to fusion energy.
Fusion Engineering and Design,2018,135:236-270
|
CSCD被引
1
次
|
|
|
|
14.
Liu Xufeng. Conceptual design and analysis of CFETR TF coil.
Journal of Fusion Energy,2015,34(5):1027-1032
|
CSCD被引
2
次
|
|
|
|
15.
Bagni T. Analysis of ITER NbTi and Nb_3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models.
Superconductor Science and Technology,2017,30(9):095003
|
CSCD被引
1
次
|
|
|
|
16.
Sedlak K. Results and analysis of the hot-spot temperature experiment for a cable-inconduit conductor with thick conduit.
Cryogenics,2015,72:9-13
|
CSCD被引
1
次
|
|
|
|
17.
Bermudez S I. Quench modeling in high-field Nb_3Sn accelerator magnets.
Physics Procedia,2015,67:840-846
|
CSCD被引
1
次
|
|
|
|
18.
何欣. CFETR极向场磁体CICC导体稳定性与交流损耗分析.
电工技术学报,2016,31(19):224-231
|
CSCD被引
2
次
|
|
|
|
19.
Devred A.
ITER Nb_3Sn critical surface parameterization,2008
|
CSCD被引
2
次
|
|
|
|
20.
彭楠.
ITER纵向场超导磁体系统降温过程热力学分析,2009
|
CSCD被引
2
次
|
|
|
|
|