激光增材制造24CrNiMo合金钢显微组织特征
Microstructure features of 24CrNiMo alloy steel fabricated by laser additive manufacturing
查看参考文献29篇
文摘
|
采用激光选区熔化技术和激光熔化沉积技术制备24CrNiMo合金钢单道和块体样品,研究两种激光辐照条件下24CrNiMo低合金钢的相组成、微观组织、织构特征和显微硬度。结果表明:两种方法制备的24CrNiMo合金试样的相组成均为α-Fe相以及少量的Fe_3C;SLM成形单道沉积样品的晶粒取向随机、无序,无明显的择优取向,而LMD成形单道沉积样品的择优取向为(110)〈101〉面织构;SLM成形块体样品的晶粒在平行于沉积方向上存在较弱的〈111〉织构,LMD成形块体样品的晶粒存在外延生长取向为〈111〉的强织构;SLM成形试样的显微组织主要为下贝氏体,而LMD成形试样的显微组织以板条贝氏体为主;具有细小晶粒和下贝氏体组织的SLM成形试样的平均显微硬度高于LMD试样。 |
其他语种文摘
|
Herein,the single-track and block samples of 24CrNiMo alloy steel were prepared by selective laser melting(SLM)technology and laser melting deposition(LMD)technology.The phase composition,microstructure,texture types and micro-hardness of 24CrNiMo low alloy steel under two laser irradiation conditions were studied.The results show that the main phase compositions of 24CrNiMo alloy samples prepared by two methods areα-Fe phase and a small amount of Fe_3C.Furthermore,the grain orientation of SLM single-track deposited sample is random and disordered,and there is no obvious preferred orientation.However,the preferred orientation of LMD single-track deposited sample is the(110)〈101〉plane texture.The grain of SLM block sample has weak〈111〉 texture parallel to the deposition direction,LMD block sample has strong texture with the〈111〉 epitaxial growth orientation.Additionally,the main microstructure of as-built SLM sample is lower bainite,and the microstructure of as-deposited LMD sample mainly consists of lathbainite.The average micro-hardness SLM sample with fine grain and lower bainite microstructure is higher than that of LMD sample. |
来源
|
材料工程
,2020,48(11):147-154 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000184
|
关键词
|
激光选区熔化
;
激光熔化沉积
;
24CrNiMo合金钢
;
显微组织
;
织构
|
地址
|
1.
沈阳工业大学材料科学与工程学院, 沈阳, 110870
2.
沈阳大陆激光技术有限公司, 沈阳, 110136
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
;
辽宁省重点研发计划
;
辽宁省沈阳市科技计划项目
|
文献收藏号
|
CSCD:6863743
|
参考文献 共
29
共2页
|
1.
Li Z Q. Low cycle fatigue behavior of Cr-Mo-V low alloy steel used for railway brake discs.
Materials & Design,2014,56:146-157
|
CSCD被引
10
次
|
|
|
|
2.
袁梅彦. 24CrNiMo合金钢的激光选区熔化成形工艺研究.
工程与试验,2019,59(2):18-21
|
CSCD被引
3
次
|
|
|
|
3.
Zeng D F. Optimization of strength and toughness of railway wheel steel by alloy design.
Materials & Design,2016,92:998-1006
|
CSCD被引
11
次
|
|
|
|
4.
Wei M W. Selective laser melting of 24CrNiMo steel for brake disc:fabrication efficiency,microstructure evolution,and properties.
Optics and Laser Technology,2018,107:99-109
|
CSCD被引
5
次
|
|
|
|
5.
Han Y R. The formability and mi-crostructure evolution of 24CrNiMo alloy steel fabricated by selective laser melting.
Vacuum,2020,175:109297
|
CSCD被引
1
次
|
|
|
|
6.
冯晓甜. 送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究.
中国激光,2019,46(3):0302003
|
CSCD被引
12
次
|
|
|
|
7.
Cui X. Microstructure and fatigue behavior of a laser additive manufactured 12CrNi2low alloy steel.
Materials Science and Engineering:A,2020,772:138685
|
CSCD被引
2
次
|
|
|
|
8.
季霄. 激光熔化沉积TiAl4V/Inconel625梯度耐磨高温涂层组织演变行为研究.
中国激光,2019,46(11):1102008
|
CSCD被引
12
次
|
|
|
|
9.
Wang X. Microstructure and mechanical behavior of additive manufactured Cr-Ni-V low alloy steel in different heat treatment.
Vacuum,2020,175:109216
|
CSCD被引
2
次
|
|
|
|
10.
Sander J. Selective laser melting of ultra-high-strength TRIP steel:processing,microstructure, and properties.
Journal of Materials Science,2017,52:4944-4956
|
CSCD被引
4
次
|
|
|
|
11.
张亮. 激光选区熔化热输入参数对Inconel 718合金温度场的影响.
材料工程,2018,46(7):29-35
|
CSCD被引
5
次
|
|
|
|
12.
Zuo P F. Microstructure evolution of 24CrNiMoY alloy steel parts by high power selective laser melting.
Journal of Manufacturing Processes,2019,44:28-37
|
CSCD被引
3
次
|
|
|
|
13.
Zhao X. The effect of different scanning strategies on microstructural evolution to 24CrNiMo alloy steel during direct laser deposition.
Materials Science and Engineering:A,2020,771:138557
|
CSCD被引
6
次
|
|
|
|
14.
Li X. Manufacturing of Ti_3SiC_2 lubricated Co-based alloy coatings using laser cladding technology.
Optics and Laser Technology,2019,114:209-215
|
CSCD被引
20
次
|
|
|
|
15.
Zhang H. Effects of chromium addition on microstructure and properties of TiC-VC reinforced Febased laser cladding coatings.
Journal of Alloys and Compounds,2014,614:107-112
|
CSCD被引
10
次
|
|
|
|
16.
Zhou Y. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2alloy steel at different laser power.
Materials Science and Engineering: A,2019,742:150-161
|
CSCD被引
7
次
|
|
|
|
17.
Cui X. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2low alloy steel.
Materials Science and Engineering:A,2020,791:139738
|
CSCD被引
4
次
|
|
|
|
18.
Wang D. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316Lstainless steel parts.
Materials & Design,2016,100:291-299
|
CSCD被引
45
次
|
|
|
|
19.
Christian M. Interaction between laser radiation and metallic powder of 316Laustenitic steel during selective laser melting.
Materials Characterization,2018,145:337-346
|
CSCD被引
2
次
|
|
|
|
20.
Marchese G. Characterization and comparison of Inconel 625processed by selective laser melting and laser metal deposition.
Advanced Engineering Materials,2017,19(3):1-9
|
CSCD被引
5
次
|
|
|
|
|