基于干扰观测器的弹药传输机械臂非线性连续时变反馈控制
Nonlinear Continuous Time-varying Feedback Control of an Ammunition Transfer Manipulator Based on Disturbance Observer
查看参考文献15篇
文摘
|
针对弹药传输机械臂在工作过程中由于受到基础振动干扰和负载不确定性的影响,存在定位精度低、定位速度慢的问题,以结构和工作原理相同的实验用原理样机为对象,提出一种基于干扰观测器扰动补偿的非线性连续时变反馈控制方法。该方法在控制律形式上类似比例微分(PD)控制,但其中比例和微分系数取决于系统Lyapunov函数,是系统误差变量的可微函数。为消除基础振动干扰和负载不确定性带来的非线性影响,采用一种有限时间非线性干扰观测器设计补偿环节。实验结果表明,基于观测器的扰动补偿可以将机械臂的定位时间由2.18 s缩短到1.32 s,缩短了39.4%;在所有基础振动干扰和不同负载的实验工况下,新控制方法都可以快速、稳定、精确地完成控制目标,验证了算法的有效性。 |
其他语种文摘
|
The ammunition transfer manipulator has low locating accuracy and slow locating speed due to base vibration and payload uncertainty during operating.This study is implemented based on a principle prototype which has the same structure and working principle with the ammunition transfer manipulator.A nonlinear continuous time-varying feedback control method is proposed based on the disturbance compensation of disturbance observer.The control method is PD-like in the form of control law,but its proportional and differential coefficients are determined by system Lyapunov function,which are the differentiable functions of system error variables.To eliminate the nonlinearities caused by base vibration and payload uncertainty,the compensation based on a finite time nonlinear disturbance observer is added to the control algorithm.Experimental results show that the disturbance observer-based compensation can shorten the positioning time by 39.4%,from 2.18 s to 1.32 s.Meanwhile,under all the experimental conditions with base vibration and different loads,the control method can always fast,steadily and precisely achieve the control target,which verifies the effectiveness of the proposed control method. |
来源
|
兵工学报
,2020,41(11):2179-2188 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.11.004
|
关键词
|
弹药传输机械臂
;
基础振动
;
负载不确定性
;
非线性连续时变反馈
;
干扰观测器
;
扰动补偿
|
地址
|
南京理工大学机械工程学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业;自动化技术、计算机技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6862699
|
参考文献 共
15
共1页
|
1.
侯保林.
火炮自动装填,2010
|
CSCD被引
28
次
|
|
|
|
2.
Cui M Y. Dynamics modeling and tracking control of robot manipulators in random vibration environment.
IEEE Transactions on Automatic Control,2012,58(6):1540-1545
|
CSCD被引
4
次
|
|
|
|
3.
Lin J. A hierarchical fuzzy approach to supervisory control of robot manipulators with oscillatory bases.
Mechatronics,2007,17(10):589-600
|
CSCD被引
8
次
|
|
|
|
4.
Toda M.
Robust motion control of oscillatory-base manipulators: H_∞-control and sliding-mode-control-based approaches,2016
|
CSCD被引
1
次
|
|
|
|
5.
郭宇飞.
不确定弹药自动装填系统动力学与控制研究,2015
|
CSCD被引
1
次
|
|
|
|
6.
Wang H. Adaptive control of robot manipulators with uncertain kinematics and dynamics.
IEEE Transactions on Automatic Control,2016,62(2):948-954
|
CSCD被引
17
次
|
|
|
|
7.
Zhang Y Y. Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters.
IEEE Transactions on Industrial Electronics,2017,65(6):4909-4920
|
CSCD被引
4
次
|
|
|
|
8.
Londhe P S. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.
ISA Transactions,2016,63:218-232
|
CSCD被引
2
次
|
|
|
|
9.
Khorashadizadeh S. Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation.
Nonlinear Dynamics,2015,79(2):1151-1161
|
CSCD被引
3
次
|
|
|
|
10.
Guo Y F. Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty.
Nonlinear Dynamics,2017,87(2):741-753
|
CSCD被引
6
次
|
|
|
|
11.
Wang X. Trajectory tracking control of a 2-DOF manipulator using computed torque control combined with an implicit Lyapunov function method.
Journal of Mechanical Science and Technology,2018,32(6):2803-2816
|
CSCD被引
3
次
|
|
|
|
12.
Chernous‘Ko L.
Control of nonlinear dynamical systems: methods and applications,2008
|
CSCD被引
1
次
|
|
|
|
13.
Shtessel Y.
Sliding mode control and observation,2014
|
CSCD被引
36
次
|
|
|
|
14.
穆朝絮. 基于干扰观测器的卫星姿态误差四元数模糊滑模控制.
东南大学学报(自然科学版),2012,42(5):886-891
|
CSCD被引
5
次
|
|
|
|
15.
吕腾. 带视线角约束的多导弹有限时间协同制导律.
兵工学报,2018,39(2):305-314
|
CSCD被引
19
次
|
|
|
|
|