液体发射药迫击炮内弹道燃烧稳定性
Combustion Stability of Interior Ballistics of Liquid Propellant Mortar
查看参考文献22篇
文摘
|
为研究液体发射药迫击炮内弹道特性,搭建60 mm液体发射药迫击炮瞬态测试系统,对其燃烧室压力变化与迫击炮弹初速进行测试。在试验基础上,基于非定常欧拉-拉格朗日模型和液体发射药蒸发-燃烧模型建立带燃烧反应的液体发射药迫击炮两相流计算模型,对内弹道过程中的反应流场进行模拟,分析复杂气相流场与液体发射药喷射燃烧间的耦合关系及压力振荡形成机理。结果表明:60 mm液体发射药迫击炮燃烧稳定性好,具有工程化潜力;数值模拟与试验结果吻合度较高,且可以复现压力振荡现象,计算模型具有合理性;液体发射药的喷射与燃烧均受燃烧室内气涡的影响;反射波引发的液体发射药集中燃烧使压力表现为一种振荡发展。 |
其他语种文摘
|
In order to explore the interior ballistic characteristics of liquid propellant mortar,a 60 mm liquid propellant mortar transient measurement system was developed to measure the pressure in combustion chamber and the muzzle velocity of mortar shell.Based on the experiment,a two-phase flow model with combustion reaction for liquid propellant mortar is established by using unsteady Eulerian-Lagrangian model and liquid propellant evaporation-combustion model.The coupling relationship between the complex gas phase flow field and the injection-combustion of liquid propellant as well as the formation mechanism of pressure oscillations are analyzed by simulating the reaction flow field during the interior ballistic process.The results show that the 60 mm liquid propellant mortar has excellent combustion stability.The numerically simulated results are in good agreement with the experimental results,where the experimental pressure oscillation is repeated,proving that the established model is reasonable and reliable.Both injection and combustion of liquid propellant are affected by gas vortex in combustion chamber.The concentrated combustion caused by the reflected waves makes the pressure appear as an oscillatory development. |
来源
|
兵工学报
,2020,41(11):2145-2154 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.11.001
|
关键词
|
液体发射药迫击炮
;
再生式液体发射药火炮
;
压力振荡
;
燃烧
;
反应流场
|
地址
|
1.
南京理工大学机械工程学院, 江苏, 南京, 210094
2.
中国空气动力研究与发展中心超高速空气动力研究所, 四川, 绵阳, 621000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
冲击波物理与爆轰物理国防科技重点实验室基金
|
文献收藏号
|
CSCD:6862696
|
参考文献 共
22
共2页
|
1.
于子平.
新概念火炮,2012:64-65
|
CSCD被引
1
次
|
|
|
|
2.
张相炎.
再生式液体发射药火炮发射过程仿真,2014:24-25
|
CSCD被引
1
次
|
|
|
|
3.
金志明. 再生式液体火炮经典内弹道模型.
兵工学报,1992,14(3):1-7
|
CSCD被引
2
次
|
|
|
|
4.
Coffee T P. Progress in modeling pressure oscillations in regenerative liquid propellant guns.
Journal of Propulsion and Power,2000,16(2):302-308
|
CSCD被引
7
次
|
|
|
|
5.
刘宁. 再生式液体发射药火炮喷雾燃烧理论及数值仿真.
工程力学,2009,26(3):224-228
|
CSCD被引
8
次
|
|
|
|
6.
王亮宽. 再生式液体发射药火炮贮液室激波模型.
兵工学报,2007,28(8):915-918
|
CSCD被引
1
次
|
|
|
|
7.
庄逢辰. OTTO-II燃料液滴的着火简化模型法和数值计算法.
工程热物理学报,1981,2(2):191-193
|
CSCD被引
1
次
|
|
|
|
8.
Swami U. Burn rate characterization of desensitized isopropyl nitrate blends.
Combustion and Flame,2018,190:454-466
|
CSCD被引
1
次
|
|
|
|
9.
Xue X C. Study on combustion characteristics and propelling projectile motion process of bulk-loaded liquid propellant.
Journal of Energetic Materials,2017,35(3):346-362
|
CSCD被引
2
次
|
|
|
|
10.
Cheng C. Influence of serial and parallel structures on the two-phase flow behaviors for dual combustion chambers with a propelled body.
Powder Technology,2017,314:442-454
|
CSCD被引
5
次
|
|
|
|
11.
Kassoy D R. Thermomechanical concepts and modeling for stability physics in liquid-propellant rocket engines.
AIAA Journal,2017,55(6):2043-2051
|
CSCD被引
1
次
|
|
|
|
12.
Taghavi S R. Numerical analysis of reactive turbulent flow in the thrust chamber of RD-108 engine rocket.
Defence Technology,2019,15(4):565-575
|
CSCD被引
2
次
|
|
|
|
13.
马龙泽. 底部排气装置快速降压过程中燃烧流动特性数值分析.
兵工学报,2019,40(3):488-499
|
CSCD被引
1
次
|
|
|
|
14.
张小兵.
枪炮内弹道学,2014:76-77
|
CSCD被引
4
次
|
|
|
|
15.
陆林. 液体发射药迫击炮内弹道建模及性能分析.
弹道学报,2017,29(3):68-73
|
CSCD被引
2
次
|
|
|
|
16.
肖忠良. 膛内火药燃烧气体化学热力学计算.
太原机械学院学报,1988,9(4):9-16
|
CSCD被引
1
次
|
|
|
|
17.
金志明.
现代内弹道学,1992:236-241
|
CSCD被引
1
次
|
|
|
|
18.
袁亚雄.
高温高压多相流体动力学理论与应用,2016:69-70
|
CSCD被引
1
次
|
|
|
|
19.
庄逢辰. 液体单元推进剂燃烧效率计算理论.
工学学报,1978,1(2):1-20
|
CSCD被引
1
次
|
|
|
|
20.
Sazhin S S. Advanced models of fuel droplet heating and evaporation.
Progress in Energy and Combustion Science,2006,32(2):162-214
|
CSCD被引
45
次
|
|
|
|
|