基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化
Tensile Damage Evolution of Plain Weave SiC/SiC Composites Based on In-situ X-Ray CT Tests
查看参考文献32篇
文摘
|
采用化学气相渗透工艺制备平纹SiC/SiC复合材料,利用X射线CT无损检测技术研究纺织陶瓷基复合材料拉伸损伤演化与失效机理.制备了第3代SiC纤维增韧平纹叠层SiC/SiC狗骨状试件.研制了CT原位拉伸测试仪,完成了纳米X射线CT原位拉伸试验,对CT扫描三维重建图像和扫描电镜照片进行了分析.结果表明:纳米X射线CT原位试验能够揭示材料拉伸损伤演化过程.平纹SiC/SiC复合材料单轴拉伸应力-应变曲线呈现明显的非线性特征,损伤萌生于非线性变化阶段.首先,出现基体横向开裂,并随着拉力的增加逐渐扩展.其次,出现层间基体开裂和纤维束基体纵向开裂,并逐渐扩展至纤维束宽度.最后,拉伸方向纤维断裂,材料失效,大多基体横向裂纹闭合,但纵向纤维束与束间基体分离严重,断口参差不齐,有明显的纤维拔出现象. |
其他语种文摘
|
Plain weave SiC/SiC composites were manufactured by the chemical vapor infiltration process,and X-ray computed tomography non-destructive testing technology was used to investigate the damage evolution and failure mechanism of textile ceramic matrix composites. Besides the third generation SiC fiber toughened plain weave laminated SiC/SiC dog bone test pieces were prepared. In addition, a CT in-situ tensile tester was developped, the nano in-situ X-ray CT tensile tests were completed, and the three-dimensional reconstruction images and scanning electron microscope photos of CT scans were analyzed. The results show that nano X-ray CT in-situ tests can reveal the evolution of tensile damage of materials. The uniaxial tensile stress-strain curve of plain weave SiC/SiC composites exhibits obvious nonlinear characteristics, with damage initiating in the stage of nonlinear changes. First, lateral cracking of the substrate occurs and gradually expands with increasing tensile force. Next, interlayer matrix cracking and fiber bundle matrix cracking occur longitudinally and gradually expand to the fiber bundle width. Finally, the fiber in the tensile direction breaks and the material fails. Most of the substrates have transverse cracks closed, but the longitudinal fiber bundles and the matrix between the bundles are severely separated, the fractures are uneven, and there are obvious fiber pull-outs. |
来源
|
上海交通大学学报
,2020,54(10):1074-1083 【核心库】
|
DOI
|
10.16183/j.cnki.jsjtu.2019.274
|
关键词
|
复合材料
;
原位试验
;
缺陷
;
损伤演化
;
失效机理
|
地址
|
1.
上海交通大学船舶海洋与建筑工程学院, 上海, 200240
2.
中国航发商用航空发动机有限责任公司, 上海, 201180
3.
西北工业大学, 超高温结构复合材料国防科技重点实验室, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-2467 |
学科
|
建筑科学 |
基金
|
国家自然科学基金
;
上海市科委科研计划项目
|
文献收藏号
|
CSCD:6856214
|
参考文献 共
32
共2页
|
1.
张立同. 新型碳化硅陶瓷基复合材料的研究进展.
航空制造技术,2003(1):24-32
|
CSCD被引
130
次
|
|
|
|
2.
高铁. 商用航空发动机陶瓷基复合材料部件的研发应用及展望.
航空制造技术,2014(6):14-21
|
CSCD被引
7
次
|
|
|
|
3.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
56
次
|
|
|
|
4.
刘虎. 国外航空发动机用SiC_f/SiC复合材料的材料级性能测试研究进展.
材料工程,2018,46(11):1-12
|
CSCD被引
23
次
|
|
|
|
5.
Li Z X. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites.
Composites Science and Technology,2018,162:101-109
|
CSCD被引
7
次
|
|
|
|
6.
Zhang D X. Influence of applied in-plane strain on transverse thermal conductivity of 0°/90° and plain weave ceramic matrix compo-sites.
International Journal of Solids and Structures,2011,48(5):828-842
|
CSCD被引
2
次
|
|
|
|
7.
Dai J X. In-situ growth of SiC nanostructures and their influence on anti-oxidation capability of C/SiC composites.
Corrosion Science,2017,124:71-79
|
CSCD被引
7
次
|
|
|
|
8.
杨成鹏. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度.
力学学报,2011,43(2):330-337
|
CSCD被引
22
次
|
|
|
|
9.
Rajan V P. Matrix cracking of fiber-reinforced ceramic composites in shear.
Journal of the Mechanics and Physics of Solids,2014,73:3-21
|
CSCD被引
6
次
|
|
|
|
10.
赵爽. SiC/SiC复合材料的制备与性能研究进展.
材料导报,2013,27(1):66-70
|
CSCD被引
5
次
|
|
|
|
11.
倪德伟. C_f/ZrB_2–ZrC–SiC超高温陶瓷基复合材料的设计、制备及性能.
硅酸盐学报,2018,46(12):1661-1668
|
CSCD被引
5
次
|
|
|
|
12.
Jin L Z. The fabrication and mechanical properties of SiC/SiC composites prepared by SLS combined with PIP.
Ceramics International,2018,44(17):20992-20999
|
CSCD被引
8
次
|
|
|
|
13.
Li T. Mechanical behavior of C/SiC composites under hypervelocity impact at di-fferent temperatures: Micro-structures, damage and mechanisms.
Composites Part A,2016,88:19-26
|
CSCD被引
3
次
|
|
|
|
14.
孟志新. 不同纤维束下SiC陶瓷基复合材料拉伸强度及拉伸行为研究.
西安航空学院学报,2019,37(5):35-42
|
CSCD被引
5
次
|
|
|
|
15.
代吉祥. 纤维热处理对C/C-SiC复合材料剪切强度的影响.
硅酸盐学报,2013,41(7):923-929
|
CSCD被引
4
次
|
|
|
|
16.
Zhang D X. Prediction of stress strain and fracture behaviour of an 8-harness satin weave ceramic matrix composite.
International Journal of Solids and Structures,2014,51(21/22):3762-3775
|
CSCD被引
4
次
|
|
|
|
17.
秦浩. PIP法制备SiC纳米线增强SiC_f/SiC复合材料及其力学性能.
硅酸盐学报,2016,44(10):1532-1537
|
CSCD被引
5
次
|
|
|
|
18.
Liu Y. Reaction layer microstructure of SiC/SiC joints brazed by Ag-Cu-Ti filler metal.
Journal of Synthetic Crystals,2009,38:195-198
|
CSCD被引
1
次
|
|
|
|
19.
Zhou X G. Studying SiC/SiC composites by X-ray tomography.
Key Engineering Materials,2014,602/603:416-421
|
CSCD被引
1
次
|
|
|
|
20.
Feng Y J. Micro-CT characterization on porosity structure of 3D Cf/SiCm composite.
Composites Part A,2011,42(11):1645-1650
|
CSCD被引
4
次
|
|
|
|
|