HVAF工艺参数对铝基非晶合金涂层性能的影响
Effects of HVAF Parameters on Properties of Al-based Amorphous Metallic Coating
查看参考文献17篇
文摘
|
针对铝基非晶合金形成能力弱的问题,采用超音速火焰喷涂(HVAF)工艺制备出铝基非晶合金涂层,研究了优化工艺参数对涂层孔隙率和非晶含量的影响,并评价了涂层的耐蚀和耐磨性能。结果表明:在合适的喷涂厚度下,提高喷枪移动速率及降低送粉速度,可有效提高涂层的致密度与非晶含量,进而明显提升了涂层的耐蚀和耐磨性能。在优化的工艺参数下得到的铝基非晶涂层孔隙率为0.12%,非晶含量为83.7%时,点蚀电位可提高到-0.3 VSCE,腐蚀电流密度降低一个数量级,磨损速率仅为5.6×10~(-4) mm~3N~(-1)m~(-1)。 |
其他语种文摘
|
For the low glass forming ability of aluminum-based amorphous alloys,Aluminum based amorphous coating was prepared by using two different high velocity air fuel (HVAF)spraying processes.The effects of process parameters on the porosity and amorphous content of the coating were studied,and the corrosion resistance and wear resistance of the coating were evaluated.The results show that:Under the proper spraying thickness,increasing the spray gun moving speed and reducing the powder feeding speed can effectively increase the density and amorphous content of the coating,,thereby significantly improving the corrosion and wear resistance.When the porosity was 0.12 % and the amorphous content was 83.7 %,the point erosion potential could be increased to-0.3 VSCE,and the corrosion current density was reduced by an order of magnitude.The wear rate is only 5.6 × 10~(-4) mm~3 N~(-1)m~(-1). |
来源
|
中国表面工程
,2020,33(1):101-109 【核心库】
|
DOI
|
10.11933/j.issn.10079289.20190507003
|
关键词
|
超音速火焰喷涂
;
非晶涂层
;
腐蚀性能
;
磨损行为
|
地址
|
1.
中国特种飞行器研究所, 结构腐蚀防护与控制航空科技重点实验室, 荆门, 448035
2.
陆军装甲兵学院, 装备再制造技术国防科技重点实验室, 北京, 100072
3.
中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-9289 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6848055
|
参考文献 共
17
共1页
|
1.
Dursun T. Recent developments in advanced aircraft aluminium alloys.
Materials & Design (1980-2015),2014,56:862-871
|
CSCD被引
351
次
|
|
|
|
2.
Jakab M A. Experimental and modeling studies of the oxygen reduction reaction on AA2024-T3.
Journal of The Electrochemical Society,2005,152(8):B311-B320
|
CSCD被引
1
次
|
|
|
|
3.
Rivera B F. Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6.
Surface & Coatings Technology,2004,176:349-356
|
CSCD被引
10
次
|
|
|
|
4.
Alexopoulos N D. Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024.
Corrosion Science,2017,121:32-42
|
CSCD被引
5
次
|
|
|
|
5.
Yang B J. Developing aluminum-based bulk metallic glasses.
Philosophical Magazine,2010,90(23):3215-3231
|
CSCD被引
12
次
|
|
|
|
6.
Wu N C. Designing aluminumrich bulk metallic glasses via electronic-structure-guided microalloying.
Acta Materialia,2016,108:143-151
|
CSCD被引
11
次
|
|
|
|
7.
Tailleart N R. Metallurgical and physical factors controlling the multi-functional corrosion properties of pulsed thermal-sprayed Al-Co-Ce coatings.
Corrosion,2012,68:035006-035026
|
CSCD被引
4
次
|
|
|
|
8.
Henao J. Novel Albased metallic glass coatings by cold gas spray.
Materials & Design,2006,94:253-261
|
CSCD被引
15
次
|
|
|
|
9.
Cheng J. In-situ synthesis of novel Al-Fe-Si metallic glass coating by arc spraying.
Journal of Alloys and Compounds,2017,716:88-95
|
CSCD被引
6
次
|
|
|
|
10.
Jakab M A. On-demand release of corrosioninhibiting ions from amorphous Al-Co-Ce alloys.
Nature Materials,2005,4(9):667-670
|
CSCD被引
5
次
|
|
|
|
11.
Zhang Z B. The preparation and corrosion resistance of Al-Ni-Y-Co amorphous and nanocrystalline composite coating.
Materials and Corrosion,2014,65:919-925
|
CSCD被引
6
次
|
|
|
|
12.
Lahiri D. Cold sprayed aluminum based glassy coating: Synthesis, wear and corrosion properties.
Surface & Coatings Technology,2013,232:33-40
|
CSCD被引
14
次
|
|
|
|
13.
Bolelli G. Tribology of HVOF-and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment.
Surface & Coatings Technology,2015,265:125-144
|
CSCD被引
9
次
|
|
|
|
14.
Zhang S D. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass.
Corrosion Science,2014,83:111-113
|
CSCD被引
7
次
|
|
|
|
15.
Gao M H. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying.
Journal of Alloys and Compounds,2018,735:1363-1373
|
CSCD被引
9
次
|
|
|
|
16.
Yang H W. Glass formability and structural stability of Al-based alloy systems.
Materials Science and Engineering A,2007,449/451:273-276
|
CSCD被引
4
次
|
|
|
|
17.
Yang H W. Evaluation of the volume fraction of nanocrystals devitrifified in Al-based amorphous alloys.
Journal of Non-Crystalline Solids,2009,355:235-238
|
CSCD被引
10
次
|
|
|
|
|