斑岩型Cu±Mo±Au矿床的勘查标志:岩石化学和矿物化学指标
Lithogeochemical and mineral chemical footprints of porphyry Cu±Mo±Au deposits:a review
查看参考文献169篇
文摘
|
斑岩型矿床作为全球Cu、Mo等金属的主要来源,蕴藏着巨大的经济价值,一直是矿业公司的重点勘查目标。本文从岩石化学和矿物化学两方面,综述了有关斑岩矿床成矿潜力评价与矿体定位方面的研究进展,总结了相应的勘查指标,以期促进该类矿床的找矿突破。研究证实,成矿岩体一般为富H_2O、高氧逸度的浅成中酸性斑岩体,发育角闪石-磁铁矿-榍石等矿物组合,显示埃达克(质)岩的地球化学性质(如高Sr、低Y和Yb、Eu异常不明显等)。斑岩体Al_2O_3/TiO_2、Sr/Y、La/Yb、V/Sc和Sr/MnO等比值可以用来反映其成矿潜力。黑云母中Cu的含量、Cl/F比值以及特殊结构的石英(如UST、石英眼)等也可作为成矿潜力评价的重要指标。近年来,锆石、磷灰石和榍石等副矿物的化学组成被广泛用来评价岩浆的温度、压力、氧逸度以及H_2O含量,进而反映其成矿潜力。此外,某些岩石化学和矿物化学参数还是岩浆成矿专属性的灵敏指标。斑岩矿床独特的蚀变-矿化-元素分带模式是找矿勘查的基本准则。针对不同蚀变带发育的特征矿物(如钾化带的金红石、青磐岩化带的绿泥石和绿帘石、绢英岩化带的绢云母等)开展原位微区成分分析和(或)短波红外光谱分析,不仅能够明确勘查方向,还有助于确定主矿体的位置。鉴于不同矿区成矿母岩的成分、侵位深度、围岩性质、蚀变分带模式等可能均存在明显差异,因此在找矿实践中应综合考虑各项找矿指标,进而提升发现新矿产的能力和效率。 |
其他语种文摘
|
Porphyry Cu deposits,globally the main sources of Cu and Mo,have great economic value and are a significant exploration target for mining companies.This study reviews the research progress in evaluation of mineralization potential of the porphyry deposits and position of mineralization center from both wholerock geochemistry and mineral chemistry perspective,and summarizes the corresponding exploration indicators in order to promote the prospecting and exploration efficiency of such deposits.Previous studies showed that the fertile porphyries are usually water-rich and oxidized,intermediate to felsic in composition,and are characterized by presence of amphibole-magnetite-titanite assemblages with adakitic rocks affinities(such as with high Sr,low Y and Yb contents,and negligible Eu anomalies).The wholerock Al_2O_3/TiO_2,Sr/Y,La/Yb,V/Sc and Sr/MnO ratios can be used to indicate the magma fertilities. Besides the Cu contents and Cl/F ratios of the biotite,special textures of the quartz(like UST,and quartz eye,etc.)are also important indicators for the evaluation of the porphyry Cu mineralization potential. Recently,geochemical compositions of the accessory minerals like zircon,apatite,and titanite are widely used to assess the magma temperature,pressure,oxygen fugacity,water content etc.to estimate magma fertility.Furthermore,some whole-rock geochemistry and mineral chemistry parameters are also sensitive indicators of magmatic metallogenic specificity.The unique alteration-mineralization-element zoning patterns of porphyry deposits are the basic criterion for mineral exploration.The characteristic minerals developed in different alteration zones,such as rutile in the potassic zone,chlorite and epidote in the propylitic zone,and sericite in the phyllic zone,in-situ composition analysis and/or short-wave infrared spectroscopy can not only clarify the exploration direction,but also help to determine the location of the main ore body.Considering the obvious differences in the composition of the parental magma,the depth of porphyry emplacement,the nature of the host rock and the model of the alteration zoning in different deposit districts,different prospecting indicators should be integrated to improve the ability and efficiency of new deposit discovery. |
来源
|
地质学报
,2020,94(11):3189-3212 【核心库】
|
DOI
|
10.19762/j.cnki.dizhixuebao.2020200
|
关键词
|
斑岩矿床
;
找矿勘查
;
成矿潜力
;
岩石地球化学
;
矿物化学
|
地址
|
1.
东华理工大学, 核资源与环境国家重点实验室, 南昌, 330013
2.
东华理工大学地球科学学院, 南昌, 330013
3.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550018
4.
Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Australia, Hobart, 7001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5717 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
;
江西省双一流学科建设专项
;
江西省“双千计划”项目、东华理工大学科研启动基金
;
中国科学院贵阳地球化学研究所矿床地球化学中国科学院重点实验室基金
|
文献收藏号
|
CSCD:6844360
|
参考文献 共
169
共9页
|
1.
Ahmed A. Assessing copper fertility of intrusive rocks using field portable X-ray fluorescence(pXRF) data.
Geochemistry-Exploration Environment Analysis,2020,20(1):81-97
|
CSCD被引
2
次
|
|
|
|
2.
Aleinikoff J N. UPb geochronology of zircon and polygenetic titanite from the Glastonbury Complex,Connecticut,USA:An integrated SEM, EMPA,TIMS,and SHRIMP study.
Chemical Geology,2002,188(1):125-147
|
CSCD被引
28
次
|
|
|
|
3.
Baker M. Identification of hydrothermal alteration related to mineralisation using epidote mineral chemistry.
Proceedings Mineral Resources to Discover: Society of Geology Applied to Ore Deposits. Volume 3,14th Biennial Conference Proceedings,2017:1069-1071
|
CSCD被引
1
次
|
|
|
|
4.
Baldwin J A. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes.
Economic Geology,1982,77(3):664-674
|
CSCD被引
7
次
|
|
|
|
5.
Ballard J R. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon: application to porphyry copper deposits of northern Chile.
Contributions to Mineralogy and Petrology,2002,144(3):347-364
|
CSCD被引
227
次
|
|
|
|
6.
Beane R E. Biotitestability in the porphyry copper environment.
Economic Geology,1974,69(2):241-256
|
CSCD被引
24
次
|
|
|
|
7.
Blevin P L. Intrusive metallogenic provinces in eastern Australia based on granite source and composition.
Transactions of the Royal Society of Edinburgh-Earth Sciences,1996,87(1/2):281-290
|
CSCD被引
9
次
|
|
|
|
8.
Blevin P L. The role of magma sources, oxidation states and fractionation indetermining the granite metallogeny of eastern Australia.
Transactions of the Royal Society of Edinburgh-Earth Sciences,1992,83(1/2):305-316
|
CSCD被引
61
次
|
|
|
|
9.
Blevin P L. Chemistry,origin,and evolution of mineralized granites in the Lachlan fold belt,Australia:The metallogeny of I-and S-type granites.
Economic Geology,1995,90(6):1604-1619
|
CSCD被引
50
次
|
|
|
|
10.
Blevin P L. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems.
Resource Geology,2004,54(3):241-252
|
CSCD被引
64
次
|
|
|
|
11.
Boomeri M. The Miduk porphyry Cu deposit,Kerman,Iran:A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes.
Journal of Geochemical Exploration,2009,103(1):17-29
|
CSCD被引
13
次
|
|
|
|
12.
Boomeri M. The Sarcheshmeh porphyry copper deposit, Kerman,Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes.
Ore Geology Reviews,2010,38(4):367-381
|
CSCD被引
16
次
|
|
|
|
13.
Bouzari F. Hydrothermalalteration revealed by apatite luminescence and chemistry:A potential indicator mineral for exploring covered porphyry copper deposits.
Economic Geology,2016,111(6):1397-1410
|
CSCD被引
18
次
|
|
|
|
14.
Burnham A D. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity.
Geochimicaet Cosmochimica Acta,2012,95:196-212
|
CSCD被引
51
次
|
|
|
|
15.
Canil D. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia,Canada.
Ore Geology Reviews,2016,72(1):1116-1128
|
CSCD被引
9
次
|
|
|
|
16.
Cao K. Geology and genesis of the giant Pulang porphyry Cu-Au district,Yunnan,Southwest China.
Economic Geology,2019,114(2):275-301
|
CSCD被引
15
次
|
|
|
|
17.
Cao M J. Major and trace element characteristics of apatites in granitoids from central Kazakhstan:Implications for petrogenesis and mineralization.
Resource Geology,2012,62(1):63-83
|
CSCD被引
30
次
|
|
|
|
18.
Cao M J. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit,Western Junggar, NW China.
Ore Geology Reviews,2015,65(4):940-954
|
CSCD被引
15
次
|
|
|
|
19.
Carten R B. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit,Colorado.
Economic Geology,1988,83(2):266-296
|
CSCD被引
20
次
|
|
|
|
20.
Castillo P R. An overview of adakite petrogenesis.
Chinese Science Bulletin,2006,51(3):258-268
|
CSCD被引
152
次
|
|
|
|
|