一种用于同步静止卫星监测的微型VLBI网
Micro VLBI network for GEO satellite monitoring
查看参考文献19篇
文摘
|
针对地球静止轨道(GEO)卫星全天时全天候高精度的监测需求,考虑传统甚长基线干涉(VLBI)测站高成本、高投入和GEO卫星专用观测时段有限等制约条件,研发了简易型VLBI观测系统,并组建了包括上海、都匀和乌鲁木齐三站的微型VLBI网(micro VLBI network,MVN),开展了并置站测试以及对GEO卫星亚太6C的连续监测,并评估了当前MVN的观测能力。结果表明MVN扣除系统差后的单站接收精度为2ns,各基线观测时延拟后残差约几纳秒,GEO目标实测位置精度为百米级(内外符精度分别约100m和400m)。不同于传统VLBI和其他GEO监测手段,MVN还具备全天时、全天候、低造价、易布设及易推广等特点,充分表明了其在GEO卫星监测领域的应用价值。 |
其他语种文摘
|
According to the requirements of all-time,all-weather and high precision geostationary orbit(GEO)satellite monitoring,a simple very long baseline interferometry(VLBI)observing system was developed and a micro VLBI network(MVN)including Shanghai,Duyun and Urumqi was built.Debugging in collocated stations was performed and GEO satellite named as Apstar6C was monitored by MVN,whose observing capability was evaluated.The receiving accuracy of single station without systematic errors was 2ns.The results show that the post-fit residuals of different baselines are about several nanoseconds.Moreover,the accuracy of observed GEO satellite orbit is in the level of 100m(internal and external accuracy of about 100mand 400mrespectively).Unlike traditional VLBI or other GEO monitoring techniques,MVN has features including all-time,all-weather,low cost,easy deployment and convenient marketing,showing its great application value in the field of GEO satellite monitoring. |
来源
|
中国空间科学技术(中英文)
,2020,40(5):119-125 【核心库】
|
DOI
|
10.16708/j.cnki.1000-758x.2020.0065
|
关键词
|
地球静止轨道
;
甚长基线干涉测量
;
微型VLBI网
;
时延
;
定轨
;
能力评估
|
地址
|
1.
中国科学院上海天文台, 上海, 200030
2.
中国科学院大学, 北京, 100049
3.
尼古拉耶夫天文台, 尼古拉耶夫, 54030
4.
黔南民族师范学院, 都匀, 558000
5.
中国科学院新疆天文台, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-758X |
学科
|
测绘学 |
基金
|
国家自然科学基金
;
贵州省教育厅青年科技人才成长项目
|
文献收藏号
|
CSCD:6844034
|
参考文献 共
19
共1页
|
1.
Luo H. Focus GEO observations of space debris at geosynchronous earth orbit.
Advances in Space Research,2019,64(2):465-474
|
CSCD被引
3
次
|
|
|
|
2.
卿芸. 基于GNSS和SLR观测数据的北斗卫星(GEO/IGSO)精密定轨.
大地测量与地球动力学,2017,37(5):467-471
|
CSCD被引
3
次
|
|
|
|
3.
Montojo F J. Astrometric positioning and orbit determination of geostationary satellites.
Advances in Space Research,2011,47(6):1043-1053
|
CSCD被引
3
次
|
|
|
|
4.
Scott R. Small aperture telescope observations of co-located geostationary satellites.
Advanced Maui Optical and Space Surveillance Technologies Conference,2010
|
CSCD被引
1
次
|
|
|
|
5.
Sergeev A V. New possibilities of the terskol observatory for investigations of"space debris"in the near-earth space.
Circumterrestrial astronomy,2010
|
CSCD被引
1
次
|
|
|
|
6.
Yu Y. Application of CCD drift-scan photoelectric technique on monitoring GEO satellites.
Advances in Space Research,2018,61(9):2320-2327
|
CSCD被引
3
次
|
|
|
|
7.
Montenbruck O. Satellite orbits: models, methods, and applications.
Applied Mechanics Reviews,2002,55(2):2504-2510
|
CSCD被引
24
次
|
|
|
|
8.
Guo R. Precise orbit determination for geostationary satellites with multiple tracking techniques.
Chinese Science Bulletin,2010(8):15-20
|
CSCD被引
13
次
|
|
|
|
9.
Ai G X. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS).
Chinese Journal of Astronomy Astrophysics,2008,8(6):611-630
|
CSCD被引
41
次
|
|
|
|
10.
Lei H. Geostationary orbit determination using SATRE.
Advances in Space Research,2011,48(5):923-932
|
CSCD被引
5
次
|
|
|
|
11.
Harles G. A novel ranging method using DVB-S transport stream packets.
7th International Workshop on Digital Signal Processing Techniques for Space Communications,2001
|
CSCD被引
1
次
|
|
|
|
12.
Huang Y. Improvement of orbit determination for geostationary satellites with VLBI tracking.
Chinese Science Bulletin,56:2765-2772
|
CSCD被引
13
次
|
|
|
|
13.
弓剑军. 基于VGOS的GEO卫星观测试验.
时间频率学报,2018,41(4):78-85
|
CSCD被引
1
次
|
|
|
|
14.
杜兰. 连线相位干涉差分测量的GEO定轨精度分析.
航天测控技术研讨会,2006
|
CSCD被引
1
次
|
|
|
|
15.
Bushuev F. Ranging geostationary telecommunication satellites with satellite TV signals.
Telecommunications & Radio Engineering,2014,73(3):257-269
|
CSCD被引
1
次
|
|
|
|
16.
Bushuev F. Results of the ongoing monitoring of the position of a geostationary telecommunication satellite by the method of spatially separated basis receiving of digital satellite television signals.
Latvian Journal of Physics & Technical Sciences,2016,53(5):5-16
|
CSCD被引
1
次
|
|
|
|
17.
黄逸丹. 深空探测单向差分测距几何时延仿真及计算.
中国空间科学技术,2014,34(1):78-83
|
CSCD被引
4
次
|
|
|
|
18.
任天鹏. 高精度相位参考甚长基线干涉测量技术与试验验证.
中国空间科学技术,2018,38(6):67-72
|
CSCD被引
3
次
|
|
|
|
19.
Petit G.
IERS Conventions(2010),IERS Technical Note No.36. IERS,2010
|
CSCD被引
1
次
|
|
|
|
|