高稳定性定量相位显微技术
Quantitative Phase Microscopy with High Stability
查看参考文献103篇
文摘
|
定量相位显微技术容易受到环境扰动的影响。如何克服环境扰动对量化相位成像的影响,一直是相位成像领域研究的热点。着重介绍了物参共路数字全息显微技术和单光束定量相位显微技术。前者主要包括斐索干涉显微、Mirau干涉显微、离轴和同轴点衍射干涉显微、双球面照明的数字全息显微和空间复用数字全息显微;后者主要包括共轴数字全息和基于平行光照明、超斜照明和多点离轴照明的定量相衬显微。希望该综述能为构建高稳定性、实用化定量相位显微装置提供有益参考。 |
其他语种文摘
|
The quantitative phase microscopy is sensitive to environmental disturbance. It has been a hot topic that how to get rid of the influence of environmental disturbance on quantitative phase imaging. This review focuses on the common-path digital holography microscopy (DHM) and single beam quantitative phase microscopy. The former mainly includes Fizeau interference microscopy, Mirau interference microscopy, off-axis and coaxial point diffraction interference microscopy, DHM of double spherical illumination, and spatially-multiplexed DHM. The latter mainly includes coaxial digital holography, and quantitative phase-contrast microscopy based on parallel light illumination, ultra-oblique illumination, and multi-point off-axis illumination. We hope that this review will provide useful reference for the construction of high stability and practical quantitative phase microscopic devices. |
来源
|
激光与光电子学进展
,2020,57(20):200001 【核心库】
|
DOI
|
10.3788/LOP57.200001
|
关键词
|
全息
;
定量相位显微
;
数字全息显微
;
物参共路
;
高稳定性
;
相衬显微
|
地址
|
1.
西安电子科技大学物理与光电工程学院, 陕西, 西安, 710071
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-4125 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
国家QR计划
;
陕西省自然科学基金
;
中国博士后科学基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6841719
|
参考文献 共
103
共6页
|
1.
Gabor D. A new microscopic principle.
Nature,1948,161(4098):777-778
|
CSCD被引
220
次
|
|
|
|
2.
Schnars U. Direct recording of holograms by a CCD target and numerical reconstruction.
Applied Optics,1994,33(2):179-181
|
CSCD被引
83
次
|
|
|
|
3.
Lin Y C. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy.
Optics Letters,2017,42(7):1321-1324
|
CSCD被引
6
次
|
|
|
|
4.
Neutsch K. Three-dimensional particle localization with common-path digital holographic microscopy.
Proceedings of SPIE. 1094,2019:109440J
|
CSCD被引
1
次
|
|
|
|
5.
Kreis T.
Handbook of holographic interferometry,2004
|
CSCD被引
1
次
|
|
|
|
6.
Geng J. Three-dimensional display technologies.
Advances in Optics and Photonics,2013,5(4):456-535
|
CSCD被引
40
次
|
|
|
|
7.
Hasegawa S. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses.
Optics Letters,2006,31(11):1705-1707
|
CSCD被引
10
次
|
|
|
|
8.
Lin X. Frequency expanded non-interferometric phase retrieval for holographic data storage.
Optics Express,2020,28(1):511-518
|
CSCD被引
6
次
|
|
|
|
9.
Yaroslavsky L.
Digital holography and digital image processing: principles, methods, algorithms,2013
|
CSCD被引
1
次
|
|
|
|
10.
李顺. 一种提高数字全息自适应光学系统成像分辨率的方法.
中国激光,2019,46(7):0709001
|
CSCD被引
4
次
|
|
|
|
11.
姚龙超. 基于高速数字全息的燃烧生物质颗粒测试.
激光与光电子学进展,2019,56(10):100901
|
CSCD被引
5
次
|
|
|
|
12.
Sutkowski M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms.
Optics and Lasers in Engineering,2000,33(3):191-201
|
CSCD被引
11
次
|
|
|
|
13.
Kohler C. Optimally tuned spatial light modulators for digital holography.
Applied Optics,2006,45(5):960-967
|
CSCD被引
3
次
|
|
|
|
14.
Zwick S. Dynamic holography using pixelated light modulators.
Applied Optics,2010,49(25):F47-F58
|
CSCD被引
4
次
|
|
|
|
15.
Reicherter M. Optical particle trapping with computer-generated holograms written on a liquid-crystal display.
Optics Letters,1999,24(9):608-610
|
CSCD被引
24
次
|
|
|
|
16.
Danesh Panah M. 3D holographic imaging and trapping for non-invasive cell identification and tracking.
Journal of Display Technology,2010,6(10):490-499
|
CSCD被引
3
次
|
|
|
|
17.
Yu H Q. Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization.
Journal of the Optical Society of America A,2019,36(12):D1-D6
|
CSCD被引
2
次
|
|
|
|
18.
Liu S. Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation.
Optics and Lasers in Engineering,2019,115:238-242
|
CSCD被引
4
次
|
|
|
|
19.
Maurer C. What spatial light modulators can do for optical microscopy.
Laser & Photonics Reviews,2011,5(1):81-101
|
CSCD被引
33
次
|
|
|
|
20.
Haist T. Programmable microscopy.
Multi-dimensional imaging,2014:153-173
|
CSCD被引
1
次
|
|
|
|
|