基于鸽群层级交互的有人/无人机集群一致性控制
Consensus Control of Manned-Unmanned Aerial Vehicle Swarm Based on Hierarchy Interaction of Pigeons
查看参考文献19篇
文摘
|
有人/无人机共融集群中的有人机可弥补无人机在复杂环境中能力的不足.利用鸽群层级交互机制能够高效传递信息的特点,提出一种有人/无人机集群一致性控制方法.根据动力学约束与人类行为特点,建立无人机动力学模型和多通道的有人机操作员模型.在此基础上,通过鸽群层级交互机制构建集群系统的层级交互网络:有人机对等级较高的无人机发送指令,并通过层级网络影响整个无人机群体.设计可节约资源的自适应牵制控制策略,实现有人/无人机集群运动状态的一致性.此外,对系统稳定性进行简要分析.仿真结果验证了方法的有效性. |
其他语种文摘
|
The manned aerial vehicle(MAV) in manned-unmanned aerial vehicle swarm(MUMS) can compensate for the inabilities of unmanned aerial vehicles(UAVs) in complex conditions.Taking the advantage of the information-efficient transmission of hierarchical interaction mechanism of pigeons,a novel method for consensus control of MUMS was proposed.According to the constraints and the human behavior characteristics,a dynamic model of UAVs and a multi-channel operator model were established,based on which,a hierarchical interaction network was constructed.In this network,the flight decisions of MAV affect the individuals with higher ranks.Then these UAVs affect the remaining UAVs through the leadership hierarchical network.Therefore,an adaptive containment control strategy was proposed to reduce the costs,and achieve motion consistency of MUMS.In addition,the stability of the system was analyzed.Moreover,the effectiveness of the proposed method was verified by simulations. |
来源
|
上海交通大学学报
,2020,54(9):973-980 【核心库】
|
DOI
|
10.16183/j.cnki.jsjtu.2020.146
|
关键词
|
有人/无人机集群
;
鸽群智能
;
协同运动
;
层级交互机制
;
一致性控制
|
地址
|
1.
北京航空航天大学自动化科学与电气工程学院, 北京, 100083
2.
中国电子科技集团公司电子科学研究院, 北京, 100041
3.
中国航空工业集团公司沈阳飞机设计研究所, 沈阳, 110035
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-2467 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
科技创新2030-"新一代人工智能"重大项目
|
文献收藏号
|
CSCD:6841649
|
参考文献 共
19
共1页
|
1.
牛轶峰. 无人 – 有人机协同控制关键问题.
中国科学:信息科学,2019,49(5):538-554
|
CSCD被引
24
次
|
|
|
|
2.
段海滨.
基于群体智能的无人机集群自主控制,2018
|
CSCD被引
46
次
|
|
|
|
3.
Chen J. Limited intervention collaborative decision-making of MAV/UAV team based on FCM.
2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC),2016:1-6
|
CSCD被引
1
次
|
|
|
|
4.
Zhong Y. Formation and adjustment of manned/unmanned combat aerial vehicle cooperative engagement system.
Journal of Systems Engineering and Electronics,2018,29(4):756-767
|
CSCD被引
15
次
|
|
|
|
5.
Nagy M. Hierarchical group dynamics in pigeon flocks.
Nature,2010,464(7290):890-893
|
CSCD被引
48
次
|
|
|
|
6.
Nagy M. Context-dependent hierarchies in pigeons.
PNAS,2013,110(32):13049-13054
|
CSCD被引
1
次
|
|
|
|
7.
Zafeiris A. Advantages of hierarchical organization: From pigeon flocks to optimal network structures.
Research in the Decision Sciences for Global Business: Best Papers from the 2013 Annual Conference,2015:21-34
|
CSCD被引
1
次
|
|
|
|
8.
Flack A. Modelling group navigation: Transitive social structures improve navigational performance.
Journal of the Royal Society, Interface,2015,12(108):20150213
|
CSCD被引
2
次
|
|
|
|
9.
Luo Q N. Distributed UAV flocking control based on homing pigeon hierarchical strategies.
Aerospace Science and Technology,2017,70:257-264
|
CSCD被引
26
次
|
|
|
|
10.
Qu Z H. An impact equivalence principle of separating control designs for networked heterogeneous affine systems.
IFAC Proceedings Volumes,2012,45(26):210-215
|
CSCD被引
1
次
|
|
|
|
11.
Nieuwenhuizen F M. Modeling human multichannel perception and control using linear time-invariant models.
Journal of Guidance, Control, and Dynamics,2008,31(4):999-1013
|
CSCD被引
3
次
|
|
|
|
12.
Abbink D A. Measuring neuromuscular control dynamics during car following with continuous haptic feedback.
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society,2011,41(5):1239-1249
|
CSCD被引
1
次
|
|
|
|
13.
Olivari M. Methods for multiloop identification of visual and neuromuscular pilot responses.
IEEE Transactions on Cybernetics,2015,45(12):2780-2791
|
CSCD被引
1
次
|
|
|
|
14.
Pettit B. Interaction rules underlying group decisions in homing pigeons.
Journal of the Royal Society, Interface,2013,10(89):20130529
|
CSCD被引
8
次
|
|
|
|
15.
Qiu H X. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks.
Aerospace Science and Technology,2017,70:471-486
|
CSCD被引
11
次
|
|
|
|
16.
邱华鑫. 基于鸽群行为机制的多无人机自主编队.
控制理论与应用,2015,32(10):1298-1304
|
CSCD被引
42
次
|
|
|
|
17.
Zhou B L. The group-delay consensus for second-order multi-agent systems by piecewise adaptive pinning control in part of time interval.
Physica A: Statistical Mechanics and its Applications,2019,513:694-708
|
CSCD被引
1
次
|
|
|
|
18.
Atman M W S. Motion synchronization for semi-autonomous robotic swarm with a passivity-short human operator.
International Journal of Intelligent Robotics and Applications,2018,2(2):235-251
|
CSCD被引
1
次
|
|
|
|
19.
邱华鑫.
鸽群交互模式切换模型及其同步性分析,2020
|
CSCD被引
1
次
|
|
|
|
|